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There’s a basic rule which runs through all kinds of music, kind of an
unwritten rule. I don’t know what it is. But I’ve got it.

- Ron Wood, guitarist of the Rolling Stones





Abstract

This thesis is on the subject of content based music playlist generation systems.
The primary aim is to develop algorithms for content based music playlist
generation that are faster than the current state of technology while keeping
the quality of the playlists at a level that is at least comparable with that of the
current state of technology. Not only need the algorithms be fast, they shall
also allow flexibility for the end user to be able to tune the algorithms to match
his personal requirements. For evaluation of the algorithms, a framework for
automatic content based music playlist generation is developed and presented.

In order to be able to evaluate the quality of music playlist generation
systems, criteria for quality judgment of playlists have to be known. To gain
insight in these quality criteria, a questionnaire is developed. The responses on
this questionnaire are analysed. It shows that the number of parameters that
influence the perceived quality of a personal playlist is huge, and the individual
variation of desired values is large. Because of the large variance in preferred
values, it is impossible to find one single set of parameters that suits for all
people. Using the results of the questionnaire, it is argued that playlist genre
consistency is a suitable criterion for assessing playlist quality. Songs within
a playlist should have approximately the same genre. The key to good music
playlist generation systems therefore is a good music similarity measure, that
allows finding ‘similar’ music. To speed up music playlist generation systems,
the music similarity measures used by these systems should be fast. This thesis
presents two steps towards faster music similarity measures.

The first step is early in the process of determining music similarity. The
properties of each song are statistically described by a Gaussian mixture model.
Similarity between songs is determined by applying the earth mover’s distance
on these statistical models of the songs to measure the similarity of the songs.
Where the current state of technology uses a constant number of Gaussians
for all songs, this thesis presents a method to estimate an optimal number
of Gaussians for each individual song. This prevents the Gaussian mixture
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models from overfitting the data of one song and allows the average number
of Gaussians per song to be reduced without sacrificing quality of the similar-
ity measure. The computation time decreases quadratically with the average
reduction of the number of Gaussians.

The second step towards faster playlist generation algorithms is an algo-
rithm that allows Gaussian mixture models to be embedded into self organizing
maps. Self organizing maps are neural networks that traditionally allow fea-
tures of high dimensionality to be mapped into a low dimensional space. In
this research, self organizing maps with embedded Gaussian mixture models
have been pioneered. Using Gaussian mixture models as neurons in a self
organizing map allows robustness of the song models to be obtained even in
the low dimensional space of the map. After training a self organizing map
and mapping the song models to the map, song similarity calculations are per-
formed in the two-dimensional space of the self organizing map, instead of the
high dimensional gaussian mixture models. The two-dimensional space allows
using simple distance measures like the euclidean distance, to determine the
similarity between two songs. This is orders of magnitude faster than using
the earth mover’s distance on the statistical song models directly.

It shows that the average number of clusters per song can be reduced by
using Gaussian mixture models with an individually estimated optimal number
of clusters per song. This allows faster music similarity computation without
sacrificing quality of the similarity measure. Projecting the Gaussian mixture
models in self organizing maps allows song similarity to be calculated extremely
fast. By combining multiple self organizing maps, flexible, high-quality music
playlist generation systems can be realised.
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Samenvatting

Dit proefschrift bespreekt systemen die automatisch (muziek)playlisten samen-
stellen en daarbij uitsluitend gebruik maken van de inhoud van de muziek. Het
doel van het onderzoek is het ontwikkelen van algoritmes die sneller zijn dan de
algoritmes die in de huidige stand der techniek toegepast worden, zonder daar-
bij aan kwaliteit in te boeten. Deze algoritmes moeten niet alleen snel, maar
ook flexibel zijn, zodat een gebruiker de algoritmes kan aanpassen aan zijn per-
soonlijke wensen. Ter evaluatie van de algoritmes wordt een zelf ontwikkeld
framework voor het automatische genereren van playlisten gepresenteerd.

Voor het beoordelen van de kwaliteit van automatisch gegenereerde playlis-
ten moeten beoordelingscriteria vastgelegd worden. Om vast te stellen wat
goede criteria zijn, is een enquete ontwikkeld en uitgevoerd. De resultaten
van deze enquete worden besproken. Het blijkt dat het aantal parameters die
de kwaliteitswaarneming van playlisten beïnvloeden groot is, en dat de voor-
keurswaarden van deze parameters per persoon erg verschillend zijn. Door deze
grote verschillen in voorkeur is het niet mogelijk om een eenvoudige parameter-
set te vinden die de voorkeuren van alle gebruikers goed beschrijven. Aan de
hand van de resultaten van de enquete, wordt afgeleid dat genre-consistentie
in een playlist een criterium is dat voor de kwaliteitsbeoordeling van playlisten
geschikt is. Muziekstukken in een playlist moeten ongeveer hetzelfde genre
hebben. Voor systemen die automatisch playlisten genereren is het dus van es-
entieel belang om een goede methode te hebben om te berekenen hoeveel twee
muziekstukken op elkaar lijken. Om deze systemen sneller te maken, moeten
de algoritmes die twee muziekstukken met elkaar vergelijken snel zijn. In dit
proefschrift worden hiervoor twee methoden beschreven.

De eerste methode betreft het modelleren van muziekstukken. De eigen-
schappen van elk muziekstuk worden statistisch beschreven met een ‘Gaussian
Mixture Model’ (GMM). Hoeveel twee muziekstukken op elkaar lijken wordt
berekend door de ‘Earth Mover’s Distance’, een algoritme dat de overeen-
komsten tussen twee GMMs berekent. In de huidige generatie van systemen
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wordt voor elk lied hetzelfde aantal clusters per GMM gebruikt. In dit proef-
schrift wordt een methode gepresenteerd waarmee voor elk muziekstuk indi-
vidueel een optimaal aantal clusters kan worden geschat. Het voordeel van
een optimaal aantal clusters per muziekstuk is dat elk muziekstuk beschreven
wordt door een model dat niet onnodig veel parameters heeft, terwijl toch de
kwaliteit van het model goed genoeg is om de inhoud van het muziekstuk te
beschrijven. De rekentijd die nodig is om de gelijkheid tussen twee GMMs te
berekenen hangt kwadratisch samen met het gemiddelde aantal clusters in de
GMMs zodat hierdoor de rekentijd aanzienlijk kan worden verkort.

De tweede methode betreft een algoritme waarmee het voor het eerst mo-
gelijk wordt, GMMs in zelf-organiserende neurale netwerken (SOMs) op te
nemen. SOMs zijn neurale netwerken die veel-dimensionale vectoren in een
weinig-dimensionale ruimte kunnen afbeelden. Hierbij blijft de onderlinge af-
standsverhouding ongeveer gelijk aan die in de veel-dimensionale ruimte. Door
GMMs in SOMs op te nemen, kunnen de voordelen van gedetailleerde statisti-
sche beschrijvingen van muziekstukken gecombineerd worden met de voordelen
van rekenen in een weinig-dimensionale ruimte in een SOM. Nadat een SOM
getraind is, kunnen de veel-dimensionale muziekstukmodellen (de GMMs) in
de SOM afgebeeld worden. Het voordeel hiervan is dat verdere berekeningen in
de twee-dimensionale ruimte in de SOM plaatsvinden. Hierdoor is het mogelijk
om in plaats van het vergelijken van GMMs met de Earth Mover’s Distance,
eenvoudigere afstandsberekeningen te gebruiken. In dit proefschrift wordt de
simpele Euclidische afstandsberekening gebruikt welke veel sneller is dan de
Earth Mover’s Distance.

Het blijkt dat door het individuele schatten van een optimaal aantal clus-
ters per GMM, het gemiddelde aantal clusters per muziekstuk verlaagd kan
worden zonder dat de kwaliteit van het systeem hierdoor vermindert. Door
het geringere aantal clusters per lied worden de berekeningen eenvoudiger en
dus sneller. Daarnaast wordt door het projecteren van de GMMs in een SOM
de snelheid van de afstandsberekeningen tussen twee muziekstukken nogmaals
verhoogd. Als meerdere SOMs gecombineerd worden, kunnen systemen ge-
realiseerd worden die eenvoudig aan de wensen van de gebruiker aangepast
kunnen worden en daarbij toch de gewenste kwaliteit leveren.
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Zusammenfassung

Diese Dissertation befasst sich mit dem Thema der inhaltsbasierten und au-
tomatischen Erstellung von Playlisten. Primäres Ziel der Arbeit ist die Ent-
wicklung neuer und schnellerer Algorithmen zum Generieren von Playlisten,
wobei trotz höherer Geschwindigkeit eine mindestens vergleichbare Qualität
zu bisherigen Verfahren erreicht werden soll. Neben diesen Hauptkriterien,
Geschwindigkeit und Qualität, sollen die Algorithmen leicht anpassbar sein.
Dies bietet den Vorteil, dass der Benutzer die Algorithmen so verändern kann,
dass die Playlisten seinen Vorlieben entsprechen. Zur Evaluation der Algorith-
men wird ein selbstentwickelter Framework für das schnellere automatische
Generieren von Playlisten vorgestellt.

Zur Beurteilung der Qualität automatisch generierter Playlisten, müssen
Qualitätskriterien definiert werden. Hierzu werden die Ergebnisse einer Nutzer-
befragung, die im Rahmen dieser Arbeit entwickelt und durchgeführt wurde,
analysiert, um einen Einblick in die Qualitätskriterien für personalisierte
Playlisten zu erhalten. Die Befragung zeigt auf, dass die Anzahl von Parame-
tern, welche die Qualitätswahrnehmung von Playlisten beeinflussen, sowie die
Varianz dieser Parameter sehr groß ist. Diese große Varianz führt dazu, dass
es nicht möglich ist, die Vorlieben aller Nutzer mit einem einfachen Parame-
tersatz zu beschreiben. Mit den Ergebnissen der Nutzerbefragung als Grund-
lage wird daher argumentiert, dass Genrekonsistenz in automatisch generierten
Playlisten das geeignete Qualitätsmerkmal ist, um die Qualität von Playlisten
zu beurteilen: Die Lieder in einer Playliste sollten aus möglichst ähnlichen
Genres stammen. Der Schlüssel zu guten automatisch generierten Playlisten
ist also ein Musikähnlichkeitsmaß, dass es erlaubt ‘ähnliche’ Lieder zu finden.
Um Systeme für das automatische Generieren von Playlisten zu beschleunigen,
müssen die Algorithmen zur Musikähnlichkeitsbestimmung, die von diesen Sys-
temen verwendet werden, schnell sein. Innerhalb dieser Dissertation werden
zwei Methoden aufgezeigt, die eine schnellere Berechnung von Musikähnlichkeit
ermöglichen.
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Die erste Methode setzt beim Modellieren der einzelnen Lieder an. Die
Liedeigenschaften werden statistisch mittels des ‘Gaussian Mixture Models’
(GMM) beschrieben. Die Ähnlichkeit zwischen einzelnen Liedern wird durch
das Anwenden eines Distanzmaß auf diese statistischen Datenmodelle (der
‘Earth Mover’s Distance’) berechnet. Anders als beim jetzigen Stand der
Technik üblich, wird in der vorliegenden Arbeit für jedes Lied individuell die
optimale Anzahl von Clustern pro GMM bestimmt. Durch die individuelle
Bestimmung der optimalen Clusteranzahl kann deren durchschnittliche An-
zahl verringert werden, ohne dass die Qualität der Ähnlichkeitsbestimmung
darunter leidet. Dies hat den großen Vorteil, dass die benötigte Rechenzeit zur
Ähnlichkeitsbestimmung erheblich reduziert wird.

Die zweite Methode stellt einen weiteren Schritt zum schnelleren automa-
tischen Generieren von Playlisten dar. Es wird ein Algorithmus vorgestellt, der
es erstmalig ermöglicht GMMs in selbstorganisierende neuronale Netze (SOMs)
aufzunehmen. SOMs sind neuronale Netze, die angewendet werden können, um
hochdimensionale Vektoren in einem niedrigdimensionalen Raum abzubilden.
Hierbei bleiben die Distanzverhältnisse zwischen den hochdimensionalen Vek-
toren im niedrigdimensionalen Raum in etwa erhalten. Durch das Verwenden
von GMMs in SOMs können die Vorteile von der detaillierten Liedbeschreibung
mittels GMMs mit den Vorteilen von SOMs kombiniert werden: das Rech-
nen im niedrigdimensionalen Raum. Nachdem ein SOM trainiert worden ist,
können die einzelnen Liedmodelle in die niedrig-dimensionalen SOM’s hinein-
projiziert werden. Nun können die Liedähnlichkeitsberechnungen im zwei-
dimensionalen SOM-Raum stattfinden. Hierdurch wird es möglich, einfache
Distanzmaße wie zum Beispiel die Euklidische Distanz zu verwenden, um die
Ähnlichkeit zweier Lieder zu bestimmen. Hierdurch kann eine schnellere Ähn-
lichkeitsberechnungen zwischen den Liedmodellen erfolgen als mit dem Earth
Mover’s Distance Algorithmus.

Es stellt sich in der Evaluation heraus, dass die durchschnittliche Anzahl
von Clustern pro Lied verringert werden kann, wenn von jedem Lied individuell
die optimale Anzahl von Clustern bestimmt wird. Dies ermöglicht schnellere
Musikähnlichkeitsberechnungen bei reduziertem Rechenaufwand und ohne
Qualitätseinbußen. Des Weiteren ermöglicht das Projizieren von GMMs in
SOMs eine extrem schnelle Liedähnlichkeitsberechnung. Durch das Kom-
binieren von mehreren SOMs können leicht anpassbare Systeme für die au-
tomatische Generierung von Playlisten realisiert werden und gleichzeitig den
Qualitätsanforderungen genügen.
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Chapter 1

Introduction

This chapter presents a short description of this thesis and indicates the rele-
vance in the context of Music Information Retrieval (MIR). Section 1.1 justifies
the work in this thesis by reviewing the current possibilities of music distribu-
tion and access. Section 1.2 gives a broad overview of the MIR research areas.
The problem definition and thesis structure are given in Section 1.3.

1.1 Justification

Since the introduction and standardisation of MP3 in 1991, digital music dis-
tribution drastically changed the possibilities for accessing music. Together
with ever increasing internet connection speeds, a vast amount of online music
providers, and affordable portable digital music players, one can easily find all
music one likes and listen to it, in theory everywhere.

In practice there are some problems with access to digital music. Digi-
tal Rights Management (DRM) prevents you from listening to the music you
bought for your IPod on your Microsoft Zune player. Tools for organizing large
music collections are of limited use, and you may never find that piece that
is stored somewhere on your IPod again if you have forgotten its name and
artist.

Finding the music one likes without having to search for hours is one of
the biggest challenges the music industry of today has to deal with. Web
applications like Last.FM1, MyStrands2, and iLike3 offer interfaces for finding
music one might like, based on observing your listening behaviour. These

1http://www.last.fm
2http://www.mystrands.com
3http://www.ilike.com
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applications compare your ‘profile’ with that of other users and recommend
music other similar listeners have liked.

At this moment, the web applications that fall into the category of ‘social
recommendation systems’ dominate the market. The drawback of social rec-
ommendation systems is twofold: Before a clear profile of a song or artist is
available, there must have been many listeners that listened to this song or
artist and have shared their data. There will always be a delay between the re-
lease of a song and obtaining robust recommendations of this song. This issue
is called the ‘cold start’ problem [38]. The second issue is closely related with
the first issue: a well-established group of listeners of a single song or artist
is needed to obtain good recommendations. This implies that ‘niche’ music,
music that is not mainstream, is hard to capture well in social recommendation
systems.

The counterpart of social music recommendation is content based music
recommendation. Content based music recommender systems extract features
from the audio signal and compare songs based on these extracted features.
‘Similar’ music will have a similar feature profile; thus recommendations can
be made. Content based music recommender systems also have many draw-
backs. Music perception is not purely physics, there are many factors influ-
encing musical taste and similarity perception. The second issue that content
based recommender systems have to deal with is computational complexity.
An accurate description of a song requires a detailed analysis of the contents
of the song. This involves a data extraction process in which the amount of
extracted data can easily be more than a few megabytes per song. These ex-
tracted data can be modelled, but operations on detailed song models will be
computationally complex.

This thesis aims at speeding up methods for content-based music recom-
mendations for playlist generation systems. Recommendation algorithms are
required to tackle the problems of navigating through large music collections.
Speed is an issue especially on devices with limited resources and slim user
interfaces.

1.2 Music Information Retrieval

This section provides a short description of the area of research this thesis
contributes to: Music Information Retrieval. MIR is the research field of
retrieving information from music. Since the mid 1990s the interest in this
field has boomed [115], resulting in the first major conference in this field in
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October 2000: ISMIR [116]. The following two sections present two different
categoratisations of the MIR research area.

1.2.1 Seven facets of Music Information

In 2003, Downie [26] defines seven facets (classes) of music information: pitch,
temporal, harmonic, timbral, editorial, textual, and bibliographic facets. MIR
researchers use information from these classes to find new ways for interacting
with or analyzing music. The facets provide a framework for categorizing
the domain a certain music information feature relates to. In the following
paragraphs, a short description of these facets is presented.

Pitch is defined as the fundamental frequency of a sound. It can be repre-
sented in Hertz (oscillations per second) or as one of 12 semitones (music) in
an octave. A modern piano has 88 keys: seven octaves plus a minor third. Its
lowest tone is A0 at 27.50 Hz, the highest is C8 at 4186.01 Hz. A sequence of
tones is conceived as a melody.

The temporal facet describes musical events with respect to their timing.
From a musical point of view, this facet can be dissected into tempo, meter,
pitch duration, harmonic duration and accents. Within MIR also other tem-
poral facets are taken into account. These include note onset time, duration
of a complete musical piece or duration of logical elements within a piece.

Harmony is the combination of pitches or intervals. We distinguish between
polyphony, the event that two or more pitches occur at the same instance, and
monophonic intervals, single pitches played sequentially. The latter can be
interpreted as implied harmony.

The fourth facet, timbre, describes tone colour. It enables us to distinguish
between a note of certain pitch, played by different instruments. Instrumenta-
tion and playing style (bowing or staccato on a violin) thus have major impact
on the timbre of a musical piece.

Written performance instructions, either in symbolic or in textual form,
are accounted to the editorial facet. These instructions vary from notitions
a composer makes on the dynamics of a piece, to a written-down solo of a
musician in an orchestra.

The textual facet, song lyrics, completes the list of facets that can be
retrieved from the audio signal.

Metadata describing music, such as artist, producer, song title, label,
etcetera are all counted to the bibliographic facet. Traditional music search
only uses these bibliographic data. Exploring other means for finding music,
by incorporating the other six facets into a search, is an important issue in
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MIR.
This thesis focusses on content-based playlist generation; playlist genera-

tion using only information one can directly extract from the audio signal. In
the categorization of Downie, this involves the pitch, temporal, harmonic and
timbral categories. In literature on content-based playlist generation, combi-
nations of features from the different categories have been used (see chapter
2.4 for details). In this thesis, only timbral features are used.

1.2.2 Alternative MIR categorization

An alternative categorization of MIR research is possible using the music rep-
resentation level. Futrelle [32] defines four categories and gives some example
research topics for each category. This table is reproduced in Table 1.1. Note
that the ’Visual’ representation can also be represented as a subcategory of
’Symbolic’, however, the field of research is very different.

Representation Description Research

Audio Recordings, Streaming
audio, Instrument li-
braries

Sound/Song spotting,
Transcription, Timbre
classification, Musical
analysis

Symbolic Notation (scores,
charts), Event-based
recordings (MIDI),
Hybrid representations

Matching, Theme/Melody
Extraction, Voice Separa-
tion, Musical Analysis

Metadata Cataloging, Bibliogra-
phy, Descriptions

Library testbeds, Tra-
ditional information
retrieval, Interoperability

Visual Scores Score reading (optical mu-
sic recognition)

Table 1.1: Music Representations and Research in MIR

The first three levels of representation can be perceived as semi-orthogonal
data. The metadata level provides us with the descriptions of music one would
use in a record store or one uses when talking about music in general terms.
The symbolic layer adds the information that is required by a musician for
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reproducing music without having to know anything else about the song. The
audio representation level finally adds the personal interpretation of the per-
forming musician. The word ’semi’ was used, since allthough the information is
from different domains, the three are tightly interconnected. Using two of the
three, a trained person can deduce a lot of information of the third dimension.

The three dimensions of music; audio, symbolic and metadata, all describe
the content of a song. Following the classification of Futrelle, the content based
playlist generation this thesis deals with, is positioned in the audio represen-
tation domain. Within the audio domain, only timbral information will be
used.

1.3 Problem definition and thesis structure

As described in Section 1.1, content based music recommendation systems
have major advantages over social recommender systems when it comes to ex-
ploiting and exploring large personal or shared music databases in case not all
music is mainstream. Much research has been done on improving the qual-
ity of content based music recommender algorithms. This research included
many facets of these algorithms. The use of new features for providing extra
information about the audio domain of the music was explored. Different data
modelling techniques and feature transformations were analyzed. A multitude
of classification and evaluation methods was tried on music. Still, the major
drawback of content based music recommendation is the lack of robustness
and the computational complexity that is inherent to performing operations
on high-dimensional, complex song models.

A factor that has major influence on the acceptance of almost any electronic
device is the speed of operation and response. This theses focusses at finding
methods to speed up personal music recommendations based on content based
music analysis. The main research question is:

Is it possible to reduce computational complexity of playlist generation
systems at playlist generation time, without sacrificing quality and
flexibility of the playlist generation method?

This question is answered by dissecting this question in three questions
that address different aspects of the main research question. The first aspect
is measuring the quality of a playlist. Currently, there is no known univer-
sal playlist quality criterium. Without a playlist quality criterium, playlist
generation systems can only subjectively be evaluated. In order to objectively
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evaluate playlist generation systems, the following question has to be answered:

Is it possible to formulate a general playlist quality criterium?

The way a person interprets the quality of a playlist depends on many
factors. In order to get insight in these factors and be able to answer this
question, a user questionnaire is designed and performed. The results of the
questionnaire are evaluated with respect to the question if there is a universal
playlist quality criterium.

Once a playlist quality criterium is found, optimisations on the signal pro-
cessing chain of playlist generation systems can be performed and the effect
of these optimisations on the quality of the systems can be evaluated. In
particular, two questions are asked:

Is the current method for modelling songs using Gaussian mixture mod-
els appropriate?

and

Is it possible to find compact song representations that allow song
similarity calculations at playlist generation time?

Answering these three research questions involves a detailed analysis of
computing music similarity, music similarity perception and music playlist
generation. Chapter 2 presents an introduction to ‘music similarity’. Several
concepts of music similarity are described and methods for measuring audio
similarity are presented. The chapter ends with an overview of the state of
technology of music similarity research.

In chapter 3 the focus is on playlist generation. First, the main concepts
and state of technology of this field of research are presented. This is followed
by a presentation of the results of a user survey on user requirements on playlist
generation systems that was performed in the scope of this thesis. Using
the results of the survey, goodness measures for playlists are discussed. The
last section of chapter 3 presents the playlist generation concept that was
developed. This includes the two major contributions to the field of MIR:

1. Fast song model complexity estimation for individual songs allows each
song to be represented with an appropriate sized statistical model.

2. Increasing robustness of song mappings in self organizing maps by us-
ing Gaussian mixture models instead of regular Euclidean vectors as
codebook entries. The process of using Gaussian mixture models in self
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organizing maps is new and has been applied for a patent.

The fourth chapter presents the architectural design of the developed frame-
work for playlist generation. It describes the algorithms and heuristics for
implementing the concepts presented in chapter 3.

In chapter 5, the developed system is evaluated. Three papers that were
written present detailed evaluation of the developed concepts. It is shown
that by using individual song complexity estimation, music similarity tasks
can be speeded up without losing accuracy. Furthermore, it is shown that self
organizing maps using Gaussian mixture models show good and robust self
organization properties.

The last chapter provides conclusions and directions for further research.
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Chapter 2

Music Similarity

2.1 Introduction

For one person, the difference between ‘doom metal’ and ‘gothic rock’ may be
completely obvious, while a piano piece by Chopin and by Satie are all the
same. For another person this may be the other way around. Perception of
music similarity cannot be generalized into detail, for a group of people with a
diverse musical taste. But what is musical taste or musical preference? Gem-
bris [34] names four factors that influence our ‘liking of a song’: demographics,
audio, media and associated feelings (see Figure 2.1). These factors can all
serve as a basis to determine perceived musical similarity.

This chapter describes music similarity only in a conceptual and technical
context. Section 2.2 presents a few aspects of music similarity based on music
theory, music perception psychology, and musical timbre. This section is fol-
lowed by an overview of how music similarity can be measured based on audio
signal analysis. In Section 2.4, several state-of-the-art algorithms that provide
different kinds of music similarity measures are presented.

Demographics

Audio
content Media

Associated
feelings

Musical
preference

Figure 2.1: Factors influencing musical preferences (Gembris [34])
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2.2 Concepts of Music Similarity

The following subsections provide a summary of music similarity concepts that
are relevant in the context of this thesis. It does not provide a complete
overview of all aspects of music similarity. Detailed information can be found
e.g. in [43] [47] and [93].

2.2.1 Music Theory

Music theory is a field of study that investigates the principal elements of music.
The elements commonly agreed upon are harmony, melody, rhythm, texture and
structure. In the following paragraphs, the most important features of these
elements and some basic similarity measures on each individual element are
presented.

Harmony

In this thesis, the word harmony is used to describe the event of two or more
tones of different pitch sounding simultaneously. According to this defini-
tion, harmony can only occur in polyphonic music: music with multiple voices
sounding at the same time. Monophonic music, music with only one single
voice at a time, can have an implied harmony. The human brain builds rela-
tionships between successively sounding notes and interprets these as harmony.

Three or more notes form a chord. The most elementary chords consist
of three notes: one base tone, its major or minor third and the perfect fifth.
Chord progressions, a sequence of chords, provide the core of harmony, and a
structure for the melody of each song. The chord sequence can be normalized
to the central key (tonality) of a song, to encompass for transpositions. Once
the sequence of chords of a song is known, this could be used for querying a
(song) database for songs with similar chord sequences. This process can be
used for e.g. music cover detection.

Melody

Where harmony is defined as the simultaneous occurrence of tones, melody is
defined as a series of musical events, of which both pitch and duration of the
single notes may vary. Throughout the centuries, different tonal scales have
been used. In western classical music until late 19thcentury, a seven note scale
(the diatonic scale) was most common. Later western music, including popular
music, uses almost only the 12 tone chromatic scale.
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A song consists of one or more melodies or melodic phrases that are re-
peated throughout the entire song. In this structure of repetitions we can find
patterns that are characteristic for different musical styles. Pop and rock mu-
sic usually consist of multiple verses, separated by a chorus whereas classical
music often has one central theme followed by variations around this theme.

Rhythm

Along with melody, rhythm is one of the fundamental components of music.
Rhythm is defined as the variation of the length and the accentuation of musical
events. Early forms of music consisted only of rhythmical patterns, performed
by clapping, shouting or drumming.

Western music rhythms are often divisive, each measure is divided in logical
groups and a natural accentuation of the pattern occurs. This pattern repeats
itself over several measures. A good example of this is the traditional waltz,
where the first note of the measure is heavily emphasized.

The opposite of divisive rhythms are additive rhythms. Additive rhythms
consist of series of patterns that are not repetitive. No regular natural accen-
tuation of notes occurs.

Texture

The quality of a sound or a piece called texture is influenced by the relationship
between and the number of voices, the instrumentation of these voices and
the harmony of a musical piece. Texture is commonly expressed in terms as
‘light’, ‘open’ or ‘raw’. Composers or artists choose to use a certain instrument
to create the texture that contributes best to the expression of the feelings or
moods of a certain song.

Structure

The preceding elementary music elements described the ingredients (the alpha-
bet) a composer has to form music. The structure of a piece can be interpreted
as the grammar, needed to formulate a story from the individual elements of
the alphabet.

Typical western classical musical forms, such as the fugue, sonata, or in-
vention consist of an exposition, development, and a recapitulation. These
elements may optionally be preceded by an introduction and succeeded by a
coda.
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Modern western music structure is usually structured around its lyrics. A
song consists of multiple verses with very similar melody, but different lyrics,
connected by chorusses, with a contrasting melody and the same lyrics. An
optional third element is an interlude, or bridge. It is used to connect two
parts of a song, which are for instance in a different tonality.

2.2.2 Timbre Similarity

The term timbre is used to describe ‘the quality or set of qualities that allows
a listener to identify the physical source of a sound’ [105]. This identification
process can be divided in a preprocessing step, where the actual audio signal
is converted to a series of nerve impulses in the inner ear, and a postprocessing
step of matching these impulses with already known sounds. Timbral similarity
measures developed by MIR researchers determine similarity largely on this
first preprocessing stage. This section elaborates on the preprocessing that
occurs in the human auditory system and on research that has been done on
the ‘elementary dimensions’ of timbre.

Auditory Preprocessing

The human ear, the sensory organ for detecting sounds, consists of three parts
[125]. The outer ear guides the sound waves to the tympanic membrane, the
outer part of the ear drum. The middle ear contains the ear drum, perform-
ing an impedance matching for transmitting the air-guided acoustic waves to
the fluid-filled inner ear. The inner ear consists of two organs, the vestibu-
lar system for sensations of balance and motion and the cochlea for hearing.
The cochlea is a snail-formed organ consisting of two chambers, pictured in
Figure 2.2. These chambers are separated by the basilar membrane, on which
the organ of Corti is located. This organ contains between 15.000 and 20.000
auditory nerve receptors, each having its own hair cell. The hair cells are ar-
ranged in four rows, the outer three functioning as a mechanical pre-amplifier,
and the inner row for the actual reception. Depending on the position on the
basilar membrane, the hair cells recept frequencies between 16 Hz and 20 kHz,
dependent on their position on the basilar membrane.

Perception of Pitch The cochlea acts as a spectrum analyzer, every recep-
tive hair cell neuron transmits information on its current activation. Like the
receptors in the human eye, this activation is a continuous, and not a discrete
value.
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Figure 2.2: Schematic drawing of human cochlea, after [125]

There are two main model types for pitch perception, place models and
temporal models. Place theory (e.g. [35]) assumes that the excitation pattern
on the basilar membrane is related to the pitch. Based on statistical models
of the structure of harmonics of an individual tone, the pitch or pitches are
determined. Temporal theory (e.g. [63]) models the basilar membrane as a
bank of linear filters. These filters resonate on a frequency which is dependent
on their position and the waveform periodicity that occurs at the membrane.
These excitation patterns are again analyzed by pattern recognition processes.

Frequency dependency The perceived loudness of a pure tone is not only
dependent on the audio level, but also on the frequency of the tone. The unit
for expressing perceived loudness is the phon, it relates the sound pressure
level (dB) to perceived loudness. Fletcher and Munson [29] have determined
the equal loudness curves as presented in Figure 2.3. At 1 kHz the phon scale is
equal to the decibel scale. For other frequencies, subjects were asked to adjust
the loudness of the signal until it was perceived to have equal loudness as the
1 kHz signal. It can be seen that the human ear is most sensitive in the range
from 1000 to 5000 Hz, approximately corresponding to the frequencies that are
most important for human speech. The zero-phon level indicates the average
human hearing threshold in quiet; tones at lower intensity are inaudible.

Auditory masking The general effect of influencing, or even suppressing
tones by other tones is called auditory masking. Tones above the hearing
threshold in quiet, can become inaudible when the intensity of a nearby tone
is large enough. In Figure 2.4, masking threshold levels are plotted for various
masker intensities. It can be seen that for larger intensities, the upward spread
of the masking effect becomes greater than the downward spread.

Two kinds of masking are distinguished: simultaneous masking and tem-
poral masking. Simultaneous masking is when the masker and the masked
signal occur simultaneously. Temporal masking occurs just after the mask-
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Figure 2.3: Phon scale: perceived loudness as function of frequency and inten-
sity level, after [29]
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Figure 2.4: Frequency masking thresholds for various masker intensities, after
[33]
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ing signal is switched off (forward masking), or right before it is switched on
(backward masking). Forward masking effects endure approximately 50 mil-
liseconds, backward masking approximately 10 milliseconds. These effects may
originate from the temporal integration of sound in the human brain.

Critical bands Although the frequency resolution of the human ear is very
high (the difference between a pure tone of 440 and 441 Hz can be heard), this
performance cannot be reached when perceiving simultaneous tones. When
two simultaneous tones have approximately the same frequency, the two tones
are perceived as one single tone with an amplitude modulation with a frequency
equal to the frequency difference of the two tones (beating). The critical band-
width can be determined by increasing the frequency difference of the two
tones, until two separate tones are perceived. This effect can be explained by
local vibrations on the basilar membrane. The length of the vibrating area
on the membrane influences the bandwidth of the critical band. Again, the
bandwidth is frequency dependent.

Timbre Dimensionality

The preceding paragraphs present the elementary functional blocks for re-
ception of sound and two phenomena influencing the perception of multiple
sounds. All timbral features used in MIR applications mimic (parts of) the
human auditory system, using approximations of these functional elements as
their building blocks.

As recognition of emotions in voice, or affection with certain sounds is pre-
sumed to rely largely on timbre perception processes, much research has been
done on what the basic dimensions of timbre are (e.g. [69, 110]). The most
common approach used in studies on timbre dimensions relies on multidimen-
sional scaling (MDS) of similarity ratings. A number of listeners is asked to
judge similarity of sound fragment duplets or triples. The sound fragments
are either recordings of ‘natural’ sounds, or synthesized sounds. The similarity
data are used to construct a distance matrix that is analyzed by a MDS algo-
rithm. The MDS algorithm tries to find a space that can best be used to map
the sounds and their distances to. Timbral features should at least correlate
with the basic dimensions of timbre found in these studies.

Caclin et al. [18] present a confirmatory study on research that has been
done thus far. Experiments with synthesized sounds of approximately 500 ms
were performed. The parameters that were varied were attack time (from onset
to the moment of maximal amplitude), spectral center of gravity (brightness),
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spectral flux and spectral irregularity (attenuation of even harmonics), which
were found to be the most important dimensions in other literature. Caclin
et al. [18] confirm attack time, spectral center of gravity and spectral irreg-
ularity to be the main dimensions of timbre. Spectral flux did not influence
similarity judgments significantly.

2.2.3 Perceived Similarity

Perception is the process of acquiring, interpreting, selecting and organizing
sensory information. Music similarity perception is studied in the field of
cognitive psychology. In this thesis, the results of a user survey on musical
preferences is presented (Section 3.4). A main theme of this user survey is
perception of music similarity. The following paragraphs provide a framework
of concepts for perceived similarity. Two main concepts of similarity as defined
in cognitive psychology are presented; the principle of prototype theory and
concept-based classification. Furthermore, the concept of integrative listening
is presented.

Prototype theory

The prototype theory [99] is considered to be one of the most influential theories
for perceptual equivalence. Within the theory of perceptual equivalence, simi-
larity between two objects is defined as the weighted sum of (sub-)similarities
on distinctive features describing the objects. Similarity judgments are per-
sonal and are not necessarily symmetrical; the Rolling Stones may be perceived
more similar to the Beatles than the other way around. This is because the
weighting of features for the object similarity depends on the relative salience
of referent and subject.

Prototype theory is a theory for categorizing objects to exemplars, proto-
typical examples, of a certain category. These exemplars are not necessarily
real members of the category, they can also be abstract objects that have the
feature properties that are most representative for all objects in that category.

In [100], the prototype theory is extended to hierarchical categorizations.
A typical example for a prototype taxonomy is given in Figure 2.5. The basic
level (chair, table) has superordinate and subordinate levels. The basic level is
most accessible, superordinate levels are more abstract and subordinate levels
show only minor variation on the basic level. Defining what taxonomy level is
the basic level, is a somewhat arbitrary process. From a information theoretic
point of view, one would describe the basic level as the categorization that
minimizes mutual information between the categories.
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Furniture

Chair Table

Armchair Rocking chair

... ... ... ...

Figure 2.5: Typical taxonomy for prototype theory

A prototype taxonomy differs from definition based taxonomies in the fact
that the distinctive features have non-binary values.

Concept-based Classification

Categorizations as found within prototype theory are feature-based. While this
is a very natural approach, not all objects can be classified by just observing
feature measurements.

The concept, or theory-based classification approach [71] suggests using ab-
stract concepts for classification (e.g. musical genre), not feature based simi-
larities. In contrast to the prototype approach, concept classification requires
background knowledge, and priorizes the role of context in similarity relations.
It should be noted, that often, relationships between feature- and theory-based
similarities exist. These relationships can be learned while gaining experience
with the particular domain (perceptual learning).

Integrative Listening

Rauhe et al. [96] presents the concept of integrative listening, the integration
of unconscious and conscious music reception. Music similarity can be ex-
pressed as the weighted sum of similarities within conscious and unconscious
listening processes. Rauhe defines six categories for music reception. Uncon-
scious listening is subdivided in diffuse reception, motoric-reflective reception
and associative-emotional reception. The conscious processes are empathic re-
ception, structural reception and subject-oriented reception. These categories
are briefly described in the following paragraphs.

Diffuse Reception The diffusive listening mode applies to listening to mu-
sic as background music. The music is non-obtrusive, reception takes place at
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the elementary level of secondary and tertiary sound components. The cat-
egory of secondary components is formed by timbral facets. Typical tertiary
components are special singing effects such as shouting or scatting. Also gen-
eral sound effects such as reverb, compression or electronic sound effects are
counted to this category.

A typical example of music designed for diffuse reception is the so-called
Muzak or ‘elevator music’. Lanza [46] presents a history of this musical genre.

Motoric-reflective Reception Triggered by rhythmic elements in music,
the recipient’s motoric sensory system is activated. This results in spontaneous
body movements, such as tapping along with the music, or wobbling on a chair.

Associative-emotional Reception Since music has become an om-
nipresent component of our daily life, music gets associated with special expe-
riences, memories and emotions. Rauhe et al. [96] distinguishes five types of
associations:

• Thematic associations, with specific words or lyrics.

• Situational associations, where the music listened to during significant,
meaningful situations, impressed the listener.

• Secondary and tertiary musical component associations; components also
present in ones favorite music triggers associations.

• Association with the social image of the artist.

• Location and time-bound associations, for instance dance music reception
in a disco.

Empathic Reception The conscious counterpart of associative-emotional
reception is empathic reception. The empathic listening mode is characterized
by the active process of feeling one’s way into the music. Where the associative-
emotional process was triggered by individual facets of the music, the empathic
reception is oriented on the musical piece as a whole.

Structural Reception The process of dissecting music in its structural
components and capturing the musical structure as a whole is described as
structural reception. This form of reception distinguishes between structural-
analytic and structural-synthetic listening. The structural-analytic listening
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mode focusses on the perception of structural details, single structural ele-
ments and structural levels, where the structural-synthetic mode describes the
process of placing relationships between the observed elements.

Subject-oriented Reception Subject-oriented reception is the process of
projecting one‘s own emotions, opinions or memories on that music in which
the listener recognizes his own personality. Subject-oriented reception is also
called mirroring-, or projective listening.

2.2.4 Cultural Similarity

Within the MIR community, cultural similarity is understood as similarity,
defined by a listener or a collection of listeners. Cultural similarity thus can-
not be captured by the audio signal itself, but only by ratings (descriptions,
comparisons to other music) of listeners.

The following paragraphs will briefly describe methods for investigating
musical preference, procedures for determining web-based similarity and lyrics
similarity. The last paragraph contains some critical remarks on generalizing
personal similarity judgments.

Musical Preference

The ultimate goal of music recommender systems is to recommend music that
matches the user’s musical preference. It is assumed that a user’s musical
preference consists of one or more clusters of ‘similar music’. In the 1920s, the
early years of radio, the first marketing-driven research on musical preferences
was performed. Over the years, a broad range of research methods have been
explored. Gembris [34] summarizes three major aspects of research, which are
briefly described in the following paragraphs.

Behavioral and Verbal Preferences Behavioral music preferences are
those preferences people indicate, when actually listening to a piece of mu-
sic. The common procedure for studying behavioral preference is a two step
procedure: first, a 15-60 second excerpt of the music is played, after which the
person is asked to judge the music with respect to a certain dimension.

The counterpart of behavioral preference studies are studies on verbal pref-
erence. The test person is not directly judging audio, but asked for preferences
on certain aspects of music for instance by completing a questionnaire or in a
interview. Verbal preferences concern preference for the notion of musical style
or genre. Gembris [34] points out, that behavioral and verbal preference often
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do not correspond. The given explanation is that the verbal preferences are
coined by social influences; these ‘open’ preferences often represent a socially
desired musical taste. The behavior preferences do not suffer from these social
demands and thus represent more ‘private’ preferences.

Pen and Paper Methods When questioned for behavioral or verbal prefer-
ences, judgments are usually retrieved using lists with questions, scaled-ratings
or with semantic differentials (e.g. good - bad, exciting - boring). Earlier re-
search has made use of longer lists of adjectives where the test person could
select one or more items from the list, describing the music best. This ap-
proach was later replaced by using pictorial scales, using icons to express how
the music is judged with respect to a certain aspect. The pictorial scales were
preferred over the adjective lists by the test persons, and lead to higher test-
retest reliability [34].

Technical Methods The pen and paper methods just described, do not
allow for instantaneous feedback on the music. Various devices have been
realized to allow immediate reactions. Early devices worked like strip chart
recorders; the state of push or shift buttons was recorded on a paper roll,
running synchronized with the music. Newer devices read sensor values and
process them in a computer. These approaches allow parallel processing of
group-feedbacks.

Web-based similarity

One important source of independent, subjective opinions about music is the
internet. There are many sites with music journalists writing about music,
weblog entries about visited concerts, and online shops with music reviews
and recommendations. These descriptions are easily available and time-aware
[122]. There have been different approaches for inferring similarity relations
using web-data. The main principles of these approaches will be described in
the following paragraphs.

One of the early works on web-based similarity is by Pachet et al. [75], who
performed a co-occurrence analysis of individual tracks on compilation CDs and
in radio playlists. The main assumption behind this kind of similarity metric
is that either the producer of the CD, or the DJ of the radio station make a
conscious decision of which music to put in what order. The co-occurrence
data were used in a hierarchical classificator to cluster ‘similar’ tracks. The
perceived correctness of these clusters was assessed by ‘five persons with a good
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knowledge of music’. The clusters found by analyzing compilation CDs were
found to be more meaningful than the approach using radio playlists.

Later work on web-based similarity focusses on artist similarity. Baumann
and Hummel [12] use a similarity measure based on algorithms often used
in text mining applications; the term frequency - inverse document frequency
(TFIDF) measure applied to a list of unigram terms, bigram terms, noun
phrases and adjectives found on web documents with the artists’ name. The
TFIDF term is calculated for each term in the list:

TFIDF = TF · log10(n/DF) (2.1)

with TF the term frequency in a set of documents known to be related to the
specific artist, DF the document frequency, counting the number of documents
with occurrences of a term in the entire document collection used for the eval-
uation and n the number of documents taken into account for the evaluation.
The TFIDF scores for each term are aggregated in a single vector per artist.
Artist similarity can then be calculated by, for instance, the cosine similarity
measure on the artist TFIDF vectors. The cosine similarity measure between
two vectors is expressed as:

similarity(A,B) = cos(Θ) =
A · B

‖A‖‖B‖ (2.2)

with A and B two vectors and Θ the angle between them.

Ellis et al. [27] investigated the suitability of different web-based simi-
larity measures as ground truth for artist similarity. Among the evaluated
measures was an Erdös distance (named after the distance measure for in how
many hops mathematicians have co-authored with the Hungarian mathemati-
cian Paul Erdös), based on the ‘similar artist’ recommendations from the All
Music Guide1. Other measures included a co-occurrence analysis of artists in
personal collections available through peer-to-peer networks and the TFIDF
measure as presented above. These measures were compared with a similarity
ground truth obtained from a large-scale online artist similarity experiment.
The Erdös measure proved to be the best match to the ground truth data,
however, the concept of a single, general ground truth is put in doubt by Ellis
et al.; the subjective author similarity ratings in the online experiment shows
great variance per user.

1www.allmusic.com
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2.3 Measuring Music Audio Similarity

Perrott and Gjerdingen [88] have found that college students where capable to
classify a piece of music quite accurately in a 10-class genre taxonomy, while
only listening to an excerpt of 250 ms. This is “fundamentally inexplicable
with present models of music perception” [105] and justifies the statement
that, even in very short timeframes, the spectral content (or ‘audio surface’) of
the audio signal contains enough information for genre classification. In these
short timeframes, there can be no complex rhythmic information.

The number of features that are currently being used for measuring music
similarity is increasing. These features can be divided in three classes: low-,
mid- and high-level features.

Low-level features are extracted directly from the audio signal. The audio
is divided in short timeframes, in which the audio signal can be approximated
as being stationary. The framelength is usually chosen between 10 and 50 ms.
Another approach is feature extraction on a segmented audio stream [121],
where segmentation is performed on for instance note onsets. Because of the
stationarity of the frames, only information on the audio surface or timbre can
be extracted. Low-level features do not capture temporal information.

Mid-level features capture information by observing a longer sequence of
short timeframes, usually low-level features. By performing statistical oper-
ations or mathematical transformations on the sequence, information on the
dynamics or structure of the audio signal is extracted. Common observation
lengths range up to 5-10 seconds.

In contrast to low- and mid-level features, high-level features have a seman-
tical meaning. High-level features can not be obtained from the audio signal
without using ‘intelligence’, either by using machine learning algorithms or by
human interaction. Low- or mid-level features can be mapped to semantic
meaningful ‘anchors’ Berenzweig et al. [13].

In this section, a selection of frequently used low- and mid-level features
are presented. This overview gives an impression of what kinds of information
can be extracted from the audio signal in the timbral domain. Techniques
for generating statistical models describing the feature data and algorithms
to measure distance between model instances are briefly introduced. Further-
more, the most common classification schemes used for genre classification
tasks are presented.
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2.3.1 Timbral and Textural Features

Most low-level features are timbral or textural features. They describe the fre-
quency distribution characteristics in a short timeframe. In the following para-
graphs, a small set of commonly used timbral features is presented. The fea-
tures using a FFT typically use timeframes of 20 miliseconds and 256 (equally
spaced) frequency bins.

Spectral Centroid

The spectral centroid (SC) feature is defined as the center of gravity of the
magnitude spectrum of the short-time Fourier transform. It is a measure of
the brightness of an audio signal and is defined as:

SC =

∑

i iS(i)
∑

i S(i)
(2.3)

with S the modulus of the discrete FFT spectrum and i the index of the FFT
frequency bins.

Spectral Roll-Off

The Roll-Off point is the frequency SRF , below which a certain percentage of
the power of the spectrum resides. Common values for this percentage range
from 80 to 95%.

SRF
∑

i=1

S(i) = 0.85 ×
N
∑

i=1

S(i) (2.4)

with S the modulus of the discrete FFT spectrum, i the index of the FFT
frequency bins and N the number of frequency bins.

Spectral Flux

The spectral flux (SF ) is a measure of the rate of change in the spectral shape
on a frame-by-frame basis.

SF =

N
∑

i=1

(St(i) − St−1(i))
2 (2.5)

with S the modulus of the discrete FFT spectrum, i the index of the FFT
frequency bins, N the number of frequency bins and t the index of the current
timeframe.
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Zero Crossings Rate

The zero crossings rate (ZCR) is a measure of the noisiness of a signal. It is
defined as the number of sign-changes per time unit [114]. The ZCR feature
is correlated with the pitch of a signal as follows from applying the ZCR on a
single sinewave signal.

Mel-scale Frequency Cepstral Coefficients

The Mel-scale is a nonlinear mapping between frequency and perceived pitch,
based on the human auditory system. For frequencies up to around 1 kHz,
pitch and frequency are perceived in a approximately linear manner, and above
approximately logarithmic. At 1 kHz, the Mel-value is 1000. The mapping
between Mel-scale and frequency is given by:

m = 1127.01048 ln(1 + f/700) (2.6)

with m in Mel and f the freqency in Hertz.

Experiments in voice-recognition research showed that using this Mel-scale
for speech recognition systems yields better results than using linear scale (e.g.
[127]). The process of calculating the MFCCs consists of the following steps:

1. Convert the signal to timeframes.

2. Convert each timeframe to the frequency domain using an STFT.

3. Take the Log of the amplitude spectrum.

4. Apply Mel-spaced triangular filters to determine the power in Mel-spaced
frequency intervals.

5. Decorrelate the filter power values using a discrete cosine transform.

This process is repeaded for each timeframe. The discrete cosine transform is
an approximation of the Karhunen-Loève-transform for independent compo-
nent analysis. Logan [52] has studied the effects of the DCT and Mel-scaling
for modeling music and concluded that the DCT is an appropriate approxima-
tion of the Karhunen-Loève-transform. Terasawa et al. [110] have investigated
perceptual similarity and conclude that the MFCC vectors account for 66% of
the perceptual variance of similarity judgments.
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Spectral Contrast Feature

The MFCC coefficients only contain information on the average signal energy
in each Mel-frequency band. An alternative measure is the spectral contrast
feature [23, 120], where instead of average band power, the power difference
between power peak and power valley are part of the feature. Instead of a Mel-
frequency scale, an octave based scale over six octaves is used. For each band,
the spectral contrast and the power value are returned. The SCF is calculated
as follows: First, the energy of each of the six sub-bands of the audio signal is
determined in the form of a vector {xj,1, xj,2, . . . , xj,N}, with j the sub-band
index. The elements in this vector are then sorted into descending order of
magnitude. Then

Pj = log

(

1

αN

αN
∑

i=1

xj,i

)

(2.7)

Vj = log

(

1

αN

αN
∑

i=1

xj,N−i+1

)

(2.8)

SCFj = Pj − Vj (2.9)

where i is the total number of FFT bins in a single frequency band and α is
a ‘neighboring factor’ with value between 0.02 and 0.2. A signal with a high
spectral contrast is likely to represent a signal with a high degree of localized
harmonic content. Signals with a low spectral contrast will thus have a lower
degree of harmonic content and a higher degree of noise components.

Pitch Class Profile

The Pitch class profile (PCP) [31] is the most widespread feature for harmony
and chord detection algorithms. The PCP defines a mapping from frequency
spectrum S to a chromagram. A chromagram (or PCP) represents the likeli-
hood of chroma occurences in an audio signal.

PCP(b) =
M−1
∑

m=0

|S(b + mB)| (2.10)

with b = 1, 2, . . . , B the chromagram bin index and M the number of octaves.
B is chosen to be equal to the number of pitches in a tonal system, for western
music B = 12.
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2.3.2 Data Modeling

Extracting one low-level feature vector of reasonable dimension (e.g. a 15-
dimensional MFCC vector) every 10 milliseconds results for a song of average
length in 15000 samples. Manipulating this amount of data, or comparing two
songs by determining the distance between all raw song features, is compu-
tationally very expensive. Instead of working on the raw features, it is also
possible to first create a statistical model that represents the original data, and
then work with the statistical model for further processing.

The following presents the two models that are most commonly used in
MIR systems: the K-Means Model and the Gaussian Mixture Model. After a
short description of what these models are, two modeling approaches that can
be used for fitting a model in a dataset are described.

k-Means Model

A dataset of samples with low variance, generated around a single mean value
µ can be efficiently described with just the mean value of all samples. A k-
means model describes a dataset S in terms of k weighted mean values. Each
mean µi is a prototype for the data it represents. There is a wide variety of
approaches available for estimating a good value for k, an overview of these
methods is presented in Section 4.3.2.

k-Means modelling

A k-means model (kMM) can be fitted to a dataset S using either a batch
k-means or an online k-means algorithm. A set of k random prototype vectors
are selected from the dataset. For the batch algorithm, the prototype vectors
are then updated as follows:

∆µi =
∑

j

ǫ(t)(xj − µi) if µi = sj (2.11)

with sj the closest prototype vector for sample xj. ǫ(t) is a monotonic decreas-
ing function of t determining the learing rate of the model. t increases with
each complete iteration. This procedure is repeated until a stopping criterium
is fulfilled.

The online algorithm has the same principle, but adapts the position of the
prototypes after each sample:

∆µi = ǫ(t)(xj − µi) if µi = sj (2.12)
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It was shown in Bottou and Bengio [15] that the online algorithm con-
verges faster at the first iteration steps, while the batch algorithm has better
convergence properties. The fast convergence of the online algorithm can be
attributed to redundancies in a dataset; only a small part of the data is enough
to yield accurate first model estimates. The worse convergence properties re-
sult from stochastic noise resulting from randomly drawing samples.

Gaussian Mixture Model

A Gaussian Mixture Model (GMM) describes the density of a dataset S in
feature space X as the weighted sum of k Gaussian probability density func-
tions. The probability of sample x, given a Gaussian mixture model can then
be expressed as:

p(x) =
k
∑

i=1

αiG(x,µi,Σi) (2.13)

G(x,µi,Σi) =
1

(2π)D/2|Σi|1/2
exp

(

−1

2
(x − µi)

T
Σ

−1
i (x − µi)

)

(2.14)

where µi is the mean vector and Σi is the (positive definite) covariance matrix
of the ith Gaussian in the mixture model.

Estimation Maximization Algorithm

When the number of components in a mixture is known in advance, the Expec-
tation Maximization (EM) algorithm [25] provides an efficient method to esti-
mate the parameters of the distribution of n data samples X = {x1, . . . ,xn}.
The EM algorithm is an iterative procedure and is guaranteed to converge [126]
to a local maximum of the maximum (log-)likelihood estimate of the mixture
model parameters Θ:

Θ̂ML = arg max
Θ

(log p (X|Θ)) (2.15)

Each iteration consists of two steps:

• E-step: Assign each sample to the mixture component that is most
likely to have generated the sample, based on the current estimate of the
model parameters.

• M-step: Recompute the model parameters based on the current sample
membership estimation.

27



Music Similarity

These steps are repeated until convergence of the likelihood estimate or until
a maximal number of iterations has been performed. The set of model param-
eters that is found using the EM algorithm describes the distribution of the
samples X . When X is a set of extracted features of a song, a set of Θ̂ML

for different songs can be used for determining similarity between songs as
described in section 2.3.4.

2.3.3 Distance Measures

Distance between a sample and a model instance

During the process of fitting a model on a dataset S in feature space X , the
distance between each sample and the model clusters have to be calculated.
For this process (also called training), there is a variety of distance measures
available. A limited subset of distance measures suitable for this training
process is presented here.

Euclidean Distance The Euclidean distance is the simplest distance mea-
sure and can be used k-means models. It can also be used for Gaussian mixture
models when discarding the covariances and treating the GMM like a kMM.
It calculates the metric distance between x and y:

DE(x,y) =

√

√

√

√

n
∑

i=1

(xi − yi)2 (2.16)

with n the dimensionality of x and y. The Euclidean distance is easy to
compute but does not take the distribution of the data into account.

Mahalanobis Distance The Mahalanobis distance [57] is a distance mea-
sure that takes the global distribution of the data into account. The distance
between datapoint x and a cluster in the dataset with mean µ is given by:

DM(x,µ) = ‖x − µ‖ΣX
=
√

(x − µ)T Σ
−1
X

(x − µ) (2.17)

where Σ is the covariance matrix of the entire dataset. Note that if Σ equals the
identity matrix, the Mahalanobis distance simplifies to the Euclidean distance.

Gaussian Mixture Distance It is proven in Li and King [48] that the
Mahalanobis distance is the optimal distance measure for estimating Σ for
distributions where the covariance in all clusters is equal to the covariance of
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the entire dataset. For most data this is not the case. Li and King show that
an optimal covariance ΣC can be chosen for each sample x, for distributions
with non-uniform covariance matrices is given by:

Σ̂C =

(

k
∑

i=1

P (i|x)Σ−1
i

)−1

(2.18)

where

P (i|x) =
αiG(x,µi,Σi)

∑k
i=1 αiG(x,µi,Σi)

(2.19)

with k the number of clusters. The distance measure then becomes:

DGM(x,µ) =

√

(x − µ)T Σ̂
−1
C

(x − µ) (2.20)

The quality of the estimated Σ̂C strongly depends on the correct choice of
the number of Gaussians k in the model.

2.3.4 Distance between model instances

Gaussian Mixture Models

A common distance measure between two Gaussian distributions is given by
the Kullback-Leibler (KL) divergence [45]. For two discrete variables with
probabilities P and Q, the KL-divergence is given by:

DKL(P‖Q) =
∑

i

P (i) log
P (i)

Q(i)
(2.21)

A closed form expression of the KL-divergence for normal (Gaussian) distribu-
tions [87] is:

DKL(P‖Q) =
1

2
log

|Σq|
|Σp|

+
1

2
Tr
(

Σ−1
q Σp

)

+
1

2
(µp−µq)

T Σ−1
q (µp−µq)−

d

2
(2.22)

The KL-divergence is often used as a distance measure between probability
distributions. For distance measures, symmetry is a desired property. The
KL-divergence is asymmetric by definition, but can easily be symmetrized:

DKLS
(P‖Q) = DKL(P‖Q) + DKL(Q‖P ) (2.23)
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The closed form expression of this symmetrized KL divergence thus can be
expressed as:

DKLS
(P‖Q) =

1

2
Tr
(

Σ−1
q Σp + Σ−1

p Σq

)

+
1

2
(µp − µq)

T
(

Σ−1
q + Σ−1

p

)

(µp − µq) − d (2.24)

Unfortunately, there is no closed form expression of the KL-divergence for
GMMs. However, there do exists methods to determine similarity between
GMM instances. A selection of frequently used GMM distance measures is
described in the following paragraphs.

Centroid Distance The centroid distance is the simplest distance measure
for mixture models. It reduces the Gaussian mixture model to one single point,
the centroid. This centroid is the weighted mean of all clusters:

µcentroid =

N
∑

n=1

wn · µn (2.25)

The centroid distance is then calculated as the Euclidean distance between the
centroids of two Gaussian mixture models. Berenzweig et al. [14] show that
this distance measure performs surprisingly good as a distance measure for a
music similarity task.

Monte Carlo method The Monte Carlo method for determining GMM
similarity is to draw random samples from one model instance and determine
the likelihood of these samples in the other GMM. This method has been used
successfully in Aucouturier and Pachet [4]. The authors use a symmetrized
and normalized form:

DMC(P‖Q) =

n
∑

i=1

log P (SP
i |P ) +

n
∑

i=1

log P (SQ
i |Q)

−
n
∑

i=1

log P (SP
i |Q) −

n
∑

i=1

log P (SQ
i |P ) (2.26)

with n the number of samples. The major drawback of this method is that it
is computationally expensive. The precision of the measure depends of n. For
a reliable distance estimation, a minimum of 2000 samples is recommended.
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Earth Mover’s Distance The Earth Mover’s Distance (Rubner et al. [101])
is a distance measure based on the minimal cost (amount of work), needed to
transform one ‘signature’ into another. Signatures can be histograms (used by
Rubner et al.) or any other data model where a distance measure between the
individual components is defined. The principle of the EMD on histograms
is illustrated in Figure 2.6. The cost of transforming the top histogram (the
supplier) to the bottom histogram (the customer) can be expressed as the
amount (flow) of ‘earth’ to be moved between supplier and customer times the
distance of the transport. Let P and Q be the two histograms (or signatures)
from Figure 2.6 with m the number of bins in P and n the number of bins in
Q. The ‘weight’ of bin pi is wpi

and the sum of weights over all bins for each
histogram equals one. The distance between pi and qj is dpiqj

, the flow is fpiqj
.

The distance between P and Q can then be found by solving a minimization
problem:

1. Minimize the cost function W as a function of the ‘flow’ f :

W =

m
∑

i=1

n
∑

j=1

dpiqj
fpiqj

(2.27)

under the constraints:

fpiqj
≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n

n
∑

j=1

fpiqj
≤ wpi

1 ≤ i ≤ m

m
∑

i=1

fpiqj
≤ wqj

1 ≤ j ≤ n

m
∑

i=1

n
∑

j=1

fpiqj
= min(

m
∑

i=1

wpi
,

n
∑

j=1

wqj
)

2. Determine the distance between P and Q by normalizing W to the sum
of all flows as:

DEMD(P,Q) =

∑m
i=1

∑n
j=1 dpiqj

fpiqj
∑m

i=1

∑n
j=1 fpiqj

(2.28)

Equation 2.27 is a linear programming problem, for which efficient solutions
exist, i.e. the transportation problem.
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Figure 2.6: Minimal cost transformation between two histograms

Asymptotic Likelihood Approximation The Asymptotic Likelihood Ap-
proximation (ALA) as presented by Vasconcelos [118] is an analytic solution of
the KL-divergence for the special case that the clusters of a GMM in feature
space X do not overlap. When the clusters do overlap, it still holds as a good
approximation. Since higher-dimensional feature spaces are more sparsely pop-
ulated than low-dimensional spaces, the overlap will is expected to be small
and the approximation will be of reasonable quality.

The ALA is defined as the distance between Gaussians P and Q with n

and m clusters respectively:

P (x) =
n
∑

j=1

wjG(x,µpj
,Σpj

)

Q(x) =

m
∑

k=1

wkG(x,µqk
,Σqk

)

ALA(P‖Q) =
∑

j

wj

(

log wqβ(j)

+

[

log G(µpj
,µqβ(j)

,Σqβ(j)
) − 1

2
trace[Σ−1

qβ(j)
Σpj

]

]

)

(2.29)

where β(j) the index of the cluster in Q that is closest to cluster j in P

according to:

β(j) = k ⇔ ‖µpj
− µqk

‖2
Σqk

− log wk

< ‖µpj
− µql

‖2
Σql

− log wl, ∀l 6= k.

32



2.3 Measuring Music Audio Similarity

2.3.5 Common Classifiers

The goal of classification algorithms is to assign a sample x from sample space
X to the class it most likely belongs to. The set of classes Y contains a finite
number of classes C. We distinguish between eager and lazy classifiers. An
eager classifier determines a relationship between X and the set of labels Y at
the training stage, while lazy learners search for a relation between x and Y
at classification stage. In this section, a selection of classification algorithms
being used in the MIR community is described.

k-Nearest Neighbors

Among the simplest classification procedures is the k-nearest neighbor algo-
rithm (kNN). For a testvector x, the k-nearest neighbours are determined.
The sample is assigned to the majority class of its neighbors. Selecting an
appropriate value for k is a tedious problem, the optimal value depends on the
dataset. Large values will reduce classification noise but result in less distinct
class borders. At small k, the algorithm is sensitive to the local structure of
data.

Two problems of the kNN algorithm are that classes with more frequent
examples dominate less prominent classes and that the algorithm does not
’scale’ well for large datasets. In this context, ’scaling’ refers to the increase of
computational complexity with the increase of the dataset. Scaling efficiency
can be improved by segmenting feature space (e.g. by using k-dimensional trees
[67]). Instead of searching through the entire dataset, only the neighboring leaf
nodes of the tree need to be traversed.

Naive Bayes

A naive Bayes classifier uses Bayes’ rule to determine the likelihood of a set of
samples in a set of classes described by a probability model. In the training
phase of a Bayes classifier, a probabilistic model (e.g. a Gaussian mixture
model) is created for each class C. Once the class models are trained, samples
can be classified using Bayes’ rule:

p(C|x1, . . . ,xn) =
p(C)p(x1, . . . ,xn|C)

p(x1, . . . ,xn)
(2.30)

Since the denominator is equal for all classes, only the numerator is of inter-
est. When assuming the samples xj are independent, the expression can be
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simplified to:

p(C|x1, . . . ,xn) = p(C)

n
∏

j=1

p(xj |C) (2.31)

The most frequent desicion rule is based on the maximum a posteriori
criterium:

class = arg max
c

p(C = c|x1, . . . ,xn) (2.32)

Decision Tree Classifiers

Decision tree classifiers build a decision tree, splitting feature space at each
decision node in two or more partitions. Each splitting decision is based on
one single attribute. The choise on what attribute to split on is made by
analyzing all possible splits with respect to an optimization criterion. Typical
examples of these optimization or goodness criteria are the information gain or
information gain ratio, based on the increase of entropy of the selected subsets
relative to the entropy before the split, or the gini index, based on the ‘purity’
of the classes.

The basic procedure for training a decision tree is:

1. Start with all training examples in the root.

2. Choose the attribute to split the training examples in the root in two
child nodes on, using a goodness criterium.

3. Assign training examples to child nodes according to splitting function.

4. Proceed recursively until a stopping criterium is reached.

The stopping criterium for perfect classification of the trainingset is when all
leaf nodes contain only one single class. Since this often results in overfitted
classifiers, full-grown trees are often pruned ; brances are cut before the original
stopping criterium is reached. There are two methods for pruning: preprun-
ing and postpruning. The prepruning procedure introduces an extra stopping
criterium: stop splitting when the goodness criterium does not improve above
a certain threshold. It is difficult to choose an appropriate threshold. Post-
pruning removes branches from a full-grown tree progressively. Classification
accuracy can be assessed on a training dataset at different stages of pruning.

Support Vector Machines

A support vector machine is a linear classifier, separating two classes by fitting
a hyperplane between the classes. The optimal classification is obtained with
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w

b/‖w‖
x

y

Figure 2.7: Linear separation of two classes using SVM. The solid line illus-
trates a decision hyperplane, the dashed lines represent the upper and lower
margins (Equations 2.33 and 2.34).

a maximum margin hyperplane (Figure 2.7), which can be fitted in the feature
space using a quadratic programming approach [17]. The optimal position of
the hyperplane solely depends on its support vectors: those samples along the
hyperplane. The points x on a hyperplane satisfy x · w − b = 0, with w the
normal vector perpendicular to the hyperplane, and b/‖w‖ the perpendicular
distance from the hyperplane to the origin. For the upper and lower margin
we can be described by:

w · x − b = 1 (2.33)

w · x − b = −1 (2.34)

Once w and b are determined, samples can be classified using w ·x− b ≤ −1

or ≥ 1.

Many classification problems are not linear seperable in the feature in-
put space. SVMs can still be used for these problems by transforming the
non-linear seperable input space to a higher dimensional space in which the
classification problem can be solved in a linear fashion. These transformations
are carried out using kernel functions, functions providing a 1 to 1 mapping
from one space to another.

Since SVMs can only differentiate between two single classes, various strate-
gies for multiclass classification are developed. The standard method for an N

class classification problem is training N SVMs, each separating one class ver-
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sus all remaining classes. The final classification result is the class with highest
classification output. Other methods include 1 vs. 1 classifiers in which SVMs
are trained for each class pair. Classification output of this ‘max wins’ strat-
egy is determined by majority vote: the class receiving most votes wins. This
method has been refined by Platt et al. [89] using directed acyclic graphs, to
reduce the number of 1 vs. 1 comparisons.

2.3.6 Self Organizing Maps

Song similarity based on content based music similarity measures is hard to
visualize in a comprehensible manner; the single features or feature sets have
high dimensionality, and so have the statistical models of songs. Data of more
than three dimensions cannot easily be displayed on a two-dimensional surface.
Methods for projecting high dimensional data to a low dimensional space are
available. One method doing this, while keeping distance relations approxi-
mately intact, is mapping the data using a self organizing map (SOM).

A SOM is a neural network that accomplishes a mapping of a high dimen-
sional space to a lower dimensional space. The term ‘self organizing’ refers to
the property that the neural net can be trained by a training set such that the
mapping approximately preserves the topology of the training set: neighbors
in the training set are mapped to neighbors in the lower dimensional space.
For training it uses the principles of competitive learning. Given a variable
x(t) ∈ Rn and a set of reference or codebook vectors mi(t) ∈ Rn, i = 1 . . . k.
Here, k is the number of neurons. The variable t is a counter that indexes the
iteration count during the learning phase of the SOM. We refer to t as ‘time’.
x(t) is drawn from a learning set. mi(0) is initialized with random vectors
from the learning set. Each codebook vector is stored in a neuron that has an
activation function monotonically decreasing with the distance of its codebook
vector to the input sample x(t).

At time t, the sample x(t) is presented to all neurons, the winning neuron
is that one having the highest activation, i.e. the neuron with the codebook
vector most similar to input x(t):

mc(t) ∈ m1...k : mc(t) = min
∀i

‖x(t) − mi(t)‖ (2.35)

The winning codebook vector mc(t) is then adapted to decrease the distance
to x(t):

mc(t + 1) = mc(t) + α(t) [x(t) − mc(t)] (2.36)

with α(t) a monotonic decreasing function, determining the learning rate of
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x(t)

Figure 2.8: Competitive learning with neighborhood functions. Each circle
represents a neuron. The dark-red neuron is mc, the light-red neurons are the
neurons that are adapted due to the neighborhood function.

the system. For sufficiently large t, the codebook vectors mi will describe
x(t) with a minimal residual error. This result is similar to that of a vector
quantization algorithm.

The described ‘network’ does not have any notion of topology, no neigh-
borhood relationships between the neurons were defined. Kohonen [44] aligned
the neurons on a grid and introduced a neighborhood function φ giving the
neurons topological relationships. The update function now not only updates
the winning neuron mc, but also its neighbors Nc (see Figure 2.8):

mi(t + 1) = mi(t) + α(t)φ(t) [x(t) − mi(t)] ∀i ∈ Nc(t) (2.37)

mi(t + 1) = mi(t) ∀i /∈ Nc(t) (2.38)

The neighborhood function is a monotonic decreasing function over dis-
tance to the winning neuron. Its radius decreases over time. Due to the
sequential overlaps of the neighborhood functions at each iteration of the al-
gorithm, the values of the codebook vectors tend to be smoothed and become
ordered. Similar input samples x will map to neurons that are topographically
close to each other.

A special form of SOM is the continous or circular SOM. This SOM has no
‘borders’. In the case of a SOM that is aligned in a rectangular grid of 10× 10

positions, the neuron at e.g. (10, 4) is a direct neighbor of the neuron at (1, 4).
This kind of SOM has been used e.g. in [70].

Self organizing maps can work with arbitrarily complex codebooks, as long
as two conditions are fulfilled. A distance measure with monotonic decreas-
ing distance function between training data and codebook entry is available
and there should be an algorithm for adapting the codebook entry to better
represent the training data.
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2.4 State of Technology

In this section, the state of technology of music genre classification systems, of
social and of content-based music recommender systems is described.

2.4.1 Genre Classification

The most common evaluation procedure for music similarity measures is genre
classification. The assumption one has to make, is that songs of the same
genre are (more or less) similar. Although the validity of using genre clas-
sification as test for music similarity is put in doubt by some authors (e.g.
[4]), other authors argue to keep pursuing genre classification, but in a more
cross-disciplinary way as has been the case up till now [61]. Musical genre is
a feature that is not primarily defined by the audio contents of a song. Def-
initions of genre change over time and humans often disagree on what is the
correct genre of a song [65].

There are many sources of ground truth data available (e.g. [16, 36, 62]).
These sources often have different genre taxonomies which makes comparison
between data from different sources even more difficult [73]. Due to copyright
restrictions, no commonly available test dataset has been agreed upon [54].
This lack of a commonly used test dataset makes it hard to compare genre
classification results of different authors.

At the yearly International Conference on Music Information Retrieval (IS-
MIR), researchers around the world are invited to participate in the Music In-
formation Retrieval Evaluation eXchange (MIREX) tasks. MIREX gives the
opportunity to compare performance of genre classification systems on one
single (closed) dataset.

Feature selection

The elementary component of a classification systems is the featureset de-
scribing the objects to be classified. There have been various approaches for
choosing features to describe music similarity. In the following paragraphs, the
basic methods that have been investigated are described.

Single domain Dan-Ning et al. [23] compare MFCC features with the spec-
tral contrast feature (SCF) in a five genre database. The genres are modeled
with 16 component Gaussian mixture models and 10 seconds audio clips are
classified into the most probable class according to the Bayesian criterion. The
MFCC features are outperformed by the SCF by a few percent. Aucouturier
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and Pachet [6] also compared MFCC with SCF and only have found a marginal
improvement of 1% in favor of the SCF.

The usage of rhythmic features for classification of ballroom music is in-
vestigated by Gouyon et al. [37]. From a wide range of features, a MFCC-like
decomposition of inter-onset interval histograms provides the largest contri-
bution to classification accuracy. It has to be noted that for ballroom music,
tempo and rhythm are essential characteristics so that using rhythmic features
for this kind of music is a natural choice.

Multiple domains Tzanetakis and Cook [114] have combined three feature
sets, describing timbral, rhythmic and pitch content of the audio. Classifica-
tion on three datasets was performed using k nearest neighbor, single Gaussian
and Gaussian mixture model based classification. The Gaussian mixture model
approach using three Gaussians outperformed the other classifiers. The indi-
vidual contributions of the timbral, rhythmic and pitch content featuresets was
assessed, the timbral features proved to give the highest classification accuracy,
but the combination of all features performed best. Pampalk et al. [80] also
combines timbral features with rhythmic features and find that weighted simi-
larity with 70% timbral and 30% rhythmic features gives optimal performance.

Whitman and Smaragdis [122] successfully combine a simple spectrum-
based feature with web-based artist similarity for a genre classification task
using a k nearest neighbour classificator. Genres that are largely culturally
defined, are found to be hard to distinguish based on the audio properties
only. The genres hardcore rap and R&B were difficult to classify using web-
based similarity, but could be classified using the audio based approach.

Feature transformations Lippens et al. [50] use a feature that attempts
to represent the physiology of the human ear. The structure of the feature is
similar to that of standard MFCC vectors, but takes effects of the propagation
in the outer ear and compression in the hair cells into account. The more
complex feature did not improve genre classification accuracy when comparing
with the MFCC feature.

Lidy and Rauber [49] explored the use of psycho-acoustic transformations
on a series of rhythmic features. By transforming the input data to a dB
loudness scale, applying an equal loudness contour correction and converting
to phon scale, dB loudness, equal loudness contour and phon scale transforms
had positive influence on a genre classification task.
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Automatic feature selection There have been multiple studies on auto-
matic feature selection. Mörchen et al. [69] use a set of 519 low level features,
on which a set of 164 static and temporal statistic operations are performed.
The performance of each individual resulting feature was assessed by analyzing
class seperability using the amount of overlap on the individual class Pareto
density estimations. Three new featuresets were defined, each consisting of the
20 top features of either overall class seperability, specialist class seperability
or a combination of overall and specialist class seperability score. The sets
were selected using a greedy selection algorithm with a correlation filter.

Mierswa and Morik [64] and Zils and Pachet [128] use a genetic program-
ming approach for finding new features. A set of operators for temporal, spec-
tral and statistical operations is defined. These operators are combined using
feature design patterns and heuristics. After each iteration of the system, the
‘fittest’ feature is selected and transformed to form a new set of similar fea-
tures. This process is repeated untill a stopping criterium is fulfilled. Although
this method is very succesful, the found feature set is tailored to the training
set which can cause serious overfitting problems.

Model based features The features described in the preceding paragraphs
did not take notion of the semantical structure of the audio. Reed and Lee [97]
present a classification method based on universal acoustic models and acoustic
segment models (ASM), a modelling approach developed for speech recognition
applications. These models are based that each word consist of a limited set
of phonemes, whose relationships can be described using a set of grammatical
rules. Reed and Lee extend these models to form a set of phonemes for mu-
sic: the audio of a training set is segmented using a minimal distortion metric
on successive frames and characteristic segments are determined using a vec-
tor quantization algorithm. After re-estimization of the segments, a HMM is
trained on each ‘phoneme’. After all phoneme models are trained, a song is
represented as a string of phoneme symbols, which can be classified using text
classification algorithms.

Pohle et al. [91] use a different approach. Inspired by image classification,
a set of ‘patches’, consisting of consecutive Mel-sone feature vectors is anal-
ysed with an independent componant analysis algorithm. Songs can then be
represented as activation histograms of the available independent components.
Similarity between songs can now be determined by comparing the activa-
tion histograms of the independent components. Performance of the similarity
measure was evaluated with a leave-one-out 1-Nearest-Neighbour genre classi-
fication task, which showed reasonable classification accuracy.
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Models and classifiers

Various data modelling and classifier techniques have been used for genre clas-
sification tasks. Tzanetakis and Cook [114] have compared single Gaussian,
Gaussian mixture models with 2-5 clusters, and k-nearest neighbor classifica-
tion on three datasets. Each song was represented by one single feature vector,
representing timbral, temporal and pitch content. On all three datasets, the
GMM classificator with three clusters delivered the best classification accuracy.
Lippens et al. [50] compared the single Gaussian classifier with results from
a human classification task on the same dataset of 160 songs from 10 genres.
The human classification results were on average about 20% better than the
results obtained with the single Gaussian classifier (88 % vs 65 % accuracy
[50]).

Aucouturier and Pachet [6] performed extensive experiments on finding an
optimal parameterset for modelling MFCC based timbre similarity with Gaus-
sian mixture models. Each song is modelled with a 50 component Gaussian
mixture model, in a 20 dimensional MFCC feature space. Using monte carlo
sampling, a song similarity matrix is build. The similarity matrix is input
to a k-nearest neighbor algorithm used for genre classification. Although 50
Gaussians performed optimal, it was noted that this number can be reduced
without much loss of classification accuracy.

Later work by Aucouturier and Pachet [7] analyzed hub occurrences as a
function of GMM homogenization. Hubs are songs that are returned in near-
est neighbour queries way more often than statistically plausible. A homog-
enization operator was used to subsequently remove the smallest clusters in
a 50-component GMM. Discarding the smallest clusters that account for five
percent of the data, caused a dramatic increase in the number of hubs.

The influcence of using a hidden Markov model to also model the temporal
relationships of the MFCC vectors was also investigated. The best performing
HMM has about the same number of free parameters as the 50 component
GMM, but performs not better than the GMM. Flexer et al. [30] find similar
results: HMMs are found to better model a song’s datastructure, but this has
no positive influence on genre classification.

Berenzweig et al. [14] compared different distance measures for Gaussian
mixture models: the asymptotic likelihood approximation (ALA), earth movers
distance (EMD) and the centroid distance. Nearest neighbor lists were re-
trieved and compared with lists obtained from a subjective similarity measure
based on a user survey. The EMD slightly outperformed the ALA. The simple
centroid distance performed remarkably well.
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Mitri et al. [65] compared a ZeroR, OneR and C4.5 decision tree classifier
on a 10-genre classification task. A 58 dimensional vector consisting of both
temporal as timbral features was extracted of 10 second excerpts of audio.
The OneR classifier selected one single feature providing optimal separation
of the classes. This single feature discrimination surprisingly showed better
classification results as the C4.5 tree classifier using all available features.

Mandel and Ellis [58] compare support vector machine classifiers with a k-
nearest neighbor classifier on both a genre- as on an artist classification task.
Both a frame based feature approach as song level features were evaluated
on a genre and on an artist classification task. The support vector machine
classifier consequently outperforms the k-nearest neighbor classifier and song
level features outperformed the frame based approach. In order to reduce the
‘album’ effect, songs from the training and test set were selected from different
albums. Without this restriction, classification accuracies are much higher,
but do not generalize well. A similar proposal was made by Pampalk et al. [80]
for genre classification tasks: The training set should contain different artists
as the test set.

2.4.2 Social Music Recommender Systems

Aucouturier and Pachet [6] state that there exists a ‘glass ceiling’ for classi-
fiers only relying on features extracted from the audio content of music. This
suggests the use of other data, that cannot be retrieved from the audio itself,
is needed to overcome this barrier.

Currently, the music recommendation services market is dominated by so-
cial recommender systems using the principles of collaborative filtering [38].
These systems (e.g. lastFM (www.last.fm), iLike (www.ilike.com)) base their
recommendations on data obtained by analyzing user preferences, either by
observing user behavior, or by analyzing user ratings of songs.

The goal of collaborative filtering systems is to learn relationships between
items by observing user interaction with and user ratings of these items. Using
collaborative filtering for recommending music to users, two approaches are
available: the user-based and the item-based approach.

The user-based approach collects statistical data on what items a user is
interested in by either observing the user’s browsing behavior or by analyzing
the user’s ratings on a set of items. These statistical data, also called ‘user
profile’, are then compared to other user profiles. Recommendations can now
be done by selecting user profiles that show high similarity with that of the
current user. Highly rated items from these other user’s profiles that are not
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yet rated or seen by the current user, are selected as potentially interesting
items and are recommended to the user.

The item-based approach does not build models of users, but models the
items: When a user is interested in item A and item B, a relation between A
and B is set up. When an other user now searches for item A, item B can be
recommended, since it is related to A.

2.5 Summary

In this chapter, an introduction to music similarity is given. In the first sec-
tion, the concept of music similarity was described with respect to music theory,
timbre similarity, perceived similarity and cultural similarity. Music can be de-
scribed using the music theoretical elements of harmony, melody, rhythm, tex-
ture and structure. Each of these elements can be used for expressing similarity
between two musical pieces. The concept of timbral similarity is explained by
analyzing the human auditory system and a short overview of studies on the
elementary dimensions of timbre. All music theoretical and timbral elements
that were described are put into context in the part on perceived similarity : the
process of recognizing these elements and the different modes of reception were
described. The first section ends with an overview of methods for measuring
cultural similarity : similarity defined by a listener or a collection of listeners.

Section 2.3 presented an overview of commonly used low- and mid-level
features for describing audio signals and methods for modelling them. The
section ends with an introduction of several classifiers. In section 2.4 these
features and classifiers return as part of the state of technology for music genre
classification algorithms.
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Chapter 3

Playlist Generation

3.1 Introduction

The concept of playlists originated from radio stations publishing a list of songs
they were to play or had played. This list not necessarily listed the songs in
the order of play, it could also just present the pool of songs of which only a
small part was played. As personal media devices have gained access to large
amounts of music, the current meaning of ‘playlists’ emerged: an ordered list
of songs, to be played in given sequence.

This thesis is about the automatic generation of personal playlists. In this
context, a personal playlist is defined as follows:

A personal playlist is a list of a number of songs in a certain order. It
has a certain length and matches the musical preference of a user.

In this chapter, the main concepts of playlist generation and the state of
technology of current playlist generation systems is described. Furthermore, a
detailed report on a questionnaire that was designed to analyze user’s listening
behavior and requirements on personal playlists is presented. This section is
followed by a discussion on possible playlist quality criteria. The chapter ends
with the presentation of the new approach for content based playlist generation
systems that was developed in the course of this research.

3.2 Concepts

The number of ways to use playlists is very large. It ranges from a personal
playlist, only listened to one single time, by a single person, to playlists for
nation-wide radio stations. This wide range of scenarios results in different user
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demands for software offering support for playlist generation. In this section,
common use-cases and user demands and some of the psychological aspects
that should be dealt with are presented.

3.2.1 Use-cases and User Demands

Radio playlists

In the keynote speech of ISMIR 2006, Huron [42] posed that music consumption
will soon be ‘AMAWAT’: Any Music, AnyWhere, AnyTime. The entertain-
ment industry is among the largest industries in the world. The main business
of radio stations will not be to entertain, but to trade consumers to advertisers.
In order to have a homogenous audience, each radio station has a certain pro-
gramming format : the overall content of the radio station. Example formats
include classic rock, classical or easy listening. Within a song collection of a
certain format, playlist rotation rules are applied. These rules ensure a mix
without undesired frequent repetitions and enough variations within a playlist.
As an example, the format and most important rotation rules for the German
local classic rock radio station Radio211 are presented here.

Radio21 targets at a male audience of 30 years and older, liking music of
the 60s, 70s and 80s with a ‘guitar sound’. Music is categorized by year, energy
(1 = slow, 4 = fast) and whether the music sounds ‘hard’ or ‘soft’. A small
subset of the collection is labeled as ‘power song’, songs that are frequently
named to be listener’s favorite songs. These user preference data are obtained
through telephonic enquiries among the audience. The typical listening length
of a Radio21 listener is 15-20 minutes. The most important property of a
Radio21 playlist is variation: the year of production of subsequent songs follows
the simple pattern 70s-60s-70s-80s-. . . , both the energy and hard/soft curve
make no large steps at once. Songs of female artists may never be played
without a male intermission. The mean energy over the entire day lies at
2.6, in the morning this tends to 3.0. Radio21 playlists are created by a
scheduling program. This program selects the songs based on given constraints
and outputs playlist for as long as one week. The music editorial staff checks
the playlists and makes small changes.

Personal playlists

Contrasting to the marketing driven radio playlists, a personal playlist can
contain any music. A classic example of a user playlist consists of all tracks

1www.radio21.de
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of a single CD, or tracks from the active items (Cunningham et al. [22]) in
a person’s CD collection. In large digital personal music collections other
playlist creation methods are used, ranging from random play through an entire
collection, playing all music of a single artist, album or genre, to careful manual
selection of single tracks.

Cunningham et al. [21] analyzed the way playlists and mixes are created
by users of the Art of the Mix website2. These playlists consist of carefully
selected songs ‘where one song responds to another song ’ for a special event, of
a certain mood or for a certain activity. The website offers the possibility for
users to exchange opinions on each other’s playlists and ask other users for help
or suggestions when creating a playlist. Cunningham et al. categorizes such
help requests in 10 organizing principles. The categorization of 115 of such help
requests is listed in Table 3.1. The percentages do not sum up to 100% since
some requests overlapped different categories. The list gives an interesting mix
of content and contextual aspects important for these personal playlists. Not
all persons making playlists make such detailed thoughts about playlists, but
the categories provide a frame for aspects to be taken into account for personal
playlists.

Category Percentage
Artist/Genre/Style 25.2%
Event or Activity 25.2%
Romance 19.1%
Message or Story 16.5%
Mood 16.5%
Challenge or Puzzle 10.4%
Orchestration 7.0%
Characteristics of Mix Recipient 6.1%
Cultural References 6.1%
Other 2.6%

Table 3.1: Categorization of Organizing Principles for Mix Help Requests.
Reproduced from [21].

The wide variety of playlist concepts and categories poses requirements on
playlist generation systems that are still out of reach of the current state of
technology. A large part of the mix help requests in Table 3.1 do not directly
concern the music genre or instrumentation, but are about using music in a
certain situation or context. These kind of metadata have been explored by

2www.artofthemix.org
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Hu et al. [41]: Usage metadata showed to be partly correlated with genre, but
only to a limited extend.

Apart from the wide variety in usage scenarios of playlists, playlist genera-
tion systems have to tackle the problem of exploiting large datasets in mobile
media devices having very limited processing power and a limited user inter-
face. Current portable media players suffer from the long tail problem: only
about 20% of the music available on a medium size collection, is actually lis-
tened to. This long tail is revealed when plotting the song play counts, sorted
on play count: a exponential-decay like plot will show up. As a consequence
of failing music access strategies, the majority of the music remains unheard.

3.2.2 Psychological Aspects

Music can have a soothing effect under stressful circumstances. Wiesenthal
et al. [123] presented a study where car drivers were either listening to their
favourite music, or not listening to music. The group listening to music showed
to be less aroused under heavy traffic conditions. In [83], distraction by music
was investigated: a group of listeners listening to their preferred music showed
to be less distracted than a group listening to their least preferred music. A
good playlist should thus contain music that is preferred by a listener.

A list of songs matching one’s personal music taste is not necessarily a
good playlist. A person having a wide musical taste may listen to very different
kinds of music at different times or different occasions. In a study performed by
Pauws and Eggen [84], users express two main wishes: the wish for coherence
and the wish for variation. The wish for coherence shows that there should
be some kind of relation between the songs in a playlist, for instance a shared
conceptual description of the songs in the list. Contrasting to the wish for
coherence is the wish for diversity. Introducing new, unpredictable musical
content provide the user with a satisfying ‘surprise effect’. It is also this effect
that is adressed by the ‘aha-slider’ of Aucouturier and Pachet [4]. The balance
between coherence and variation is further studied in section 3.4.

3.3 State of the art in playlist generation

Various methods for music playlist generation have been proposed. These
methods use either purely content based features [20, 53, 82, 92], high level
metadata [1, 94] or a combination of both [3, 39, 74, 84]. These approaches all
have in common, that ‘similar’ songs are sought, which are played after each
other. Purely content-based methods apply nearest neighbor-like strategies,
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while the use of high level metadata allows posing a set of constraints a playlist
has to satisfy. In this section, nearest neighbor based strategies, constraint
satisfaction techniques and alternative ways to generate playlists are described.

3.3.1 Nearest Neighbor and variations

Nearest neighbor approaches to playlist generation are all based on a distance
measure expressing similarity between each song as a distance. ‘Similar’ songs
have a small distance to each other. Using a heuristic, those songs that are
similar to each other are enqueued in a playlist.

Early work by Logan and Salomon [55] explore the use of an MFCC based
timbral similarity measure for simple playlist generation. The performance of
the similarity measure was analyzed by retrieving playlists consisting of the N

nearest neighbors of a seed song. The quality (or ‘goodness’) of the playlists
was assessed by analyzing the average number of songs in the same genre or
by the same artist, within the closest 5, 10 or 20 nearest neighbors.

Logan extends the nearest neighbor approach to song trajectories in [53]. A
fully connected graph is formed from all songs in the database. Each song is a
node and the link strengths are given by the distances between the songs found
by the MFCC based distance measure. The first trajectory strategy is selecting
the shortest path of length N starting at a seed song. In case of a loop in the
path, either the next closest song of the current song, that is not part of the
playlist is chosen, or the path is restarted from the next closest song from the
original seed song. The second trajectory strategy includes automatic relevance
feedback: of each M nearest neighbors of the seed song, N -closest playlists are
generated. The final playlist has the songs ranked by their cumulative song
position in all M playlists. Logan evaluated both trajectory strategies with the
same measure in [55]. The second strategy showed a slightly worse performance
as the simple N -closest playlist baseline.

Herrera et al. [39] combine timbre, tempo, genre, mood and year similarity
in their E-Mu jukebox. Users can set the weights of the individual features by
dragging feature weight adapters in a feature weighting space. The returned
playlist consists of the nearest neighbors of a seed song according to a weighted
similarity distance measure over all feature.

Pohle et al. [92] explore circular playlists covering an entire music database
with more than 3000 songs using a timbre-based distance measure and the
traveling salesman algorithm to determine the shortest path through all songs.
The traveling salesman algorithm is originally used in operations research. The
name is a metaphor for the problem of determining the sequence of visiting all
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cities in a country exactly once. The optimal sequence has the shortest possible
path length. Four algorithms approximating the optimal traveling salesman
problem (TSP) solution on a music dataset were evaluated with respect to over-
all path length and the short time and long time genre consistency. The short
time and long time genre consistency measure assesses the number of different
genres occurring within a short- (e.g. 12 consecutive songs, the average num-
ber of songs on a CD) or long-time (e.g. 75 consecutive songs, music for one
day) interval in a playlist. The algorithms providing the shortest overall path
length show high short-time genre consistency, but as soon as an artist filter is
applied, disallowing tracks of one artist to occur twice within six consecutive
songs, both route length and consistency severely degrade. Two algorithms
providing better long-time genre consistency showed to be less sensitive to the
artist filter; after the artist filtering, short-time consistency is comparable to
the other algorithms.

Pampalk et al. [82] present a dynamic playlist generation system based
on a audio based similarity measure [80] and user skipping behaviour. The
performance of four playlist generation heuristics are evaluated for three use-
cases: 1) the user wants to listen to songs similar to a seed song. 2) like 1, but
not songs of a particular artist. 3) the user’s preference changes over time from
genre A to genre B. Songs that do not fit within the current user preference
are skipped. The analyzed heuristics are:

a) Play the N nearest neighbors of a seed song. Once a song is skipped,
the next item in the list is played. This non-dynamic algorithm serves
as baseline.

b) Play the nearest neighbor of the latest accepted song.

c) Play the closest to any of the accepted songs.

d) Let da and ds be the distances to the nearest accepted and nearest
skipped song respectively. If da < ds add the candidate song to the
set S. Play the song in S with smallest da. If S is empty, add the song
with the smallest da/ds ratio.

These heuristics are depicted in Figure 3.1. Evaluation took place on a 2522
song dataset containing 22 genres. The median and mean number of skips
indicate how well each heuristic performs. For all three use-cases, heuristic d

significantly outperforms the other heuristics. A playlist of 20 correct songs for
the first use-case requires a median of 11 skips, vs 37 for the (static) heuristic
a.
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Figure 3.1: Playlist generation heuristics a-d. The dots represent songs
mapped in a two-dimensional surface. The three subfigures (from left to right)
show the differences (yellow) between the four heuristics. Red indicates that a
song was actively skipped. The dashed circles show decision distances for the
different heuristics. Reproduced from [82]

3.3.2 Constraint Satisfaction

The constraint satisfaction approach to playlist generation allows specification
of a set of constraints a playlist has to fulfill. These constraints may either be
coherence constraints imposing restrictions on relations between songs, or abso-
lute constraints defining overall properties of a playlist (e.g. which percentage
of all songs in a playlist must have a certain property).

A good example of using constraint satisfaction for playlist generation is
provided by Pachet et al. [74]. The used features are placed in a taxonomy
and similarity relations between the feature values are defined. For a feature
like tempo, this is trivial, but for genre relations this is a tedious process. A
typical playlist request then may look like:

• The playlist must contain 12 songs.

• Only medium and fast tempos.

• At least 30 percent of the songs should be of a female artist.

• Genre should be close to the neighboring genres.

• Each artist may only occur once.

This constraint satisfaction problem is not rewritten as a minimization prob-
lem but is implemented in a two step process. In the backtracking procedure,
variables are progressively initialized with values that are available in their re-
spective domains. If an inconsistency is detected that precludes finding a valid
solution, the procedure goes back and tries again. The backtracking phase
is followed by a domain reduction phase. In this phase, those values of the
variable domains that cannot pertain to a valid solution are removed from the
search space. This reduced domain allows faster search for valid solutions.
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Figure 3.2: Connected graph (left) and Markov random field with exit prob-
abilities (right) for playlist generation. Each node (a . . . f) represents a song.
The exit probabilities in the Markov random field (indicated as fractions at
the outgoing links) are determined by the sum of link weights of the node and
the link weight of the corresponding outgoing link.

Aucouturier and Pachet [5] introduced adaptive search as an alternative to
constraint satisfaction for playlist generation. Adaptive search is a local search
technique, iteratively optimizing the costs of a search solution. The advantage
of this adaptive search strategy is that the search can be terminated at any
time, providing a feasible, but non-optimal solution. Non-optimal solutions
are acceptable for a large number of applications and it requires only about
25% of the time to find a nearly-optimal playlist.

3.3.3 Other

Ragno et al. [94] use online playlists shared by radio stations to infer similarity
between songs. Each song is represented as a node in a graph. For each time
two songs are played after each other, the link weight between the two songs is
increased. When the amount of playlist data used to create the graph is large,
this process results in a tightly connected graph, with songs that are likely to
appear together with a high link weight. In order to create playlists, the graph
is mapped to a Markov random field. To this purpose, the weights of all arcs
wa terminating on a node are summed up to wN . Each arc is then replaced
by two directed arcs, each with an exit probability of wa/wN (see Figure 3.2).
Once the Markov random field is known, playlists can be generated by random
traversal through the now directed graph.

Song distance matrixes can be generated from the Markov random field
by converting the node exit probabilities to distances. This can for instance
be done by taking the log likelihood of the exit probability to determine the
distance between two songs in one direction. Using a shortest path finding
algorithm between two nodes, the distance between any pair of songs can be
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expressed as the sum of the link distances.

Pauws and Eggen [84] use a decentralized clustering approach in order to
allow for the required coherence within the clusters together with the demand
of enough variation in a playlist. The used clustering procedure is dynamic,
and uses a learning song distance measure that adapts itself to positive and
negative feedback of the user. The distance measure uses a large set of high
level features (e.g. year of release, rhythm, instrumetation, etcetera). Song
similarity is expressed as the sum of weighted feature similarity. The feature
weights are adapted by training a decision tree on the user feedback labels
‘preferred’ and ‘rejected’. The depth of a feature in the tree is used to adapt
the feature weighting.

Song clusters are formed in a two-dimensional Euclidean space of finite size.
All songs move around through this space with a certain speed and direction.
The initial state is initialized with random positions, speeds and directions for
each song. At each time step, a random song ‘senses’ whether there is a song in
its vicinity. If this is the case, and the song is very similar, it adapt its speed
and direction to match that of the similar song. Playlists are generated by
selecting songs that are close to each other in the euclidean clustering space.

3.4 User Survey

There is extensive literature on playlist generation algorithms, music similarity
functions and perceived music or timbre similarity (e.g. [1, 5, 14, 74]). Some
studies present a human evaluation of how well a music similarity measure
performs (e.g. [27, 84]) or whether automatically generated playlists make
sense (e.g. [92]), but no literature was found on the actual user demands on
playlists.

3.4.1 Goals

In scope of this research, an online questionnaire was designed to gain insights
in user requirements on automatic playlist generation systems. The two main
questions to be answered were: ‘On what criteria does a user decide if he/she
likes a song?’ and ‘What criteria are of relevance for generating a playlist?’.

A difference between conscious, active listening and unconscious, passive
listening is assumed for playlist listening behavior. The validity of this assump-
tion is assessed by comparing criteria importance ratings for both listening
modes.
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A wide variety in genre taxonomies is available, with hierarchical genre
taxonomies expressing relationships between main and sub-genres. Part of the
questionnaire aimed at analyzing listening behavior, musical preferences and
the relations between favorized genres.

3.4.2 Questionnaire

Visitors of six online music forums and members of MIR-related mailing lists
have been invited to take part in the online questionnaire, both available in
english and german. The target audience is between 14 and 55 years of age
and uses new media devices for music consumption.

The questionnaire consists of six parts. The first part is about musical
preferences and listening habits and consists of 11 questions. These questions
ask for preferences and dislikes of musical genres and the reasons thereof. Fur-
thermore, this part contains questions on the influence music has on personal
mood, on what situations music is listened to and for how long.

The second part aims at getting a detailed description of what aspects are
named when describing music or musical genre. Part three is dedicated to
in-car music listening behavior. Influences of the traffic situation on music
preference are analyzed. What media devices are used to listen to music by
the participant and whether he/she is an active musician is asked for in part
four.

The questions relating to playlists are grouped in part five. The partic-
ipants are asked to judge the importance of 12 playlist characteristics for a
playlist. This question differentiates between listening to music as ‘background
music’ and listening to music as primary occupation if the participant perceives
these to be different.

Part six concludes the questionnaire with some questions on demographic
data. The entire questionnaire contains 33 questions.

The questionnaire was available online from May 23rd until June 22nd 2007.

3.4.3 Evaluation

The intended target audience for the questionnaire was the population between
14 and 55 years of age, using new media such as mp3-player, pc and the inter-
net. By choosing the internet as primary medium, only those people that are
online are reached. This introduces a bias toward a higher educated, male au-
dience. As a consequence of inviting for participation on music-related internet
fora and mailinglists, the results of this research are also biased towards peo-
ple having strong interest in music. Participation was voluntary, which means
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Figure 3.3: Education and age of questionnaire participants

that the self-selection process already filtered out people with low interest in
the topic. These biases prevent the results from being easily generizable to a
broader audience.

Sample

While the questionnaire was available online, 275 participants have answered
all the questions. During the pre-test and a street interview phase, an addi-
tional 43 complete questionnaires were filled out, resulting in a total of 318
responses. 62% of the respondents were male, with an average age of 27,5
years. The female participants were only slightly younger, 26,9 years on aver-
age. The participants were divided in five age categories: 14-19, 20-29, 30-39,
40-49 and 50-59 years.

The educational level of the participants is high, almost 50% has a college
or university degree.

Musical style and song preferences

In the first part of the questionnaire, the participants are asked for their fa-
vorite genres and an indication of on basis of what elements these genres are
favorized. The participants can choose from a list of thirteen elements: rhythm,
topicality, structure, artist, song mood, associated feelings, instrumentation,
lyrics, melody, tempo, vocals, popularity and sound. The three elements that
were named most often are song mood (67.4%), melody (58.6%) and rhythm
(56.9%). Topicality and popularity are the least important with 3.9% and 0.7%
respectively.

A very similar question is on what elements are important for liking a single
song. The participants can choose from a list of fifteen elements, the thirteen
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Figure 3.4: Elementary elements for judging preference for a genre and for a
song

from the previous question and genre, own mood and harmony. It was expected
that the same elements are important for judging genre preference and song
preference. This expectation turned out not to be true; the most important
elements for single song preference are melody (63.0%), vocals (62.6%) and
associated feelings (50.8%).

In Figure 3.4 the answers of both questions are shown. Comparing the
aspects for genre and song preferences, there are a few remarkable differences.
For judging song preference, topicality (22.2% vs 3.9%), artist (38.4% vs 26%)
and popularity (41.5% vs 0.7%) gain major importance. Song mood turns out
to be less important for the liking of a single song. A further look reveals
that for genre preferences, the analytical elements song structure, lyrics and
instrumentation are more important.

Using the results of question one, an alternative genre similarity graph
can be created. The most frequently named genre preference combinations
that were named as favorite musical style are shown in Figure 3.5. Graphs like
these preferred genre combinations graph can be used by constraint satisfaction
approaches for playlist generation; genre continuity constraints can restrict
allowed genre combinations within a distance to the genre of the first song in
a playlist.

Listening behavior

The first part of the questionnaire contained 20 questions on personal listening
behavior. The main topics of these questions were the influences of music on
personal well-being, factors influencing the choice what music to listen to and
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Figure 3.5: Frequently named preferred genre combinations

the main properties of the active music collection.

Music is important for 91.3% of the people. 95.0% indicate that music can
have a positive influence on personal mood. The opinion on whether music can
have a negative influence on mood is less uniform; 52.7% of the participants
indicate that music can worsen personal mood. The statement ‘Music helps
me to relax’ was said to apply for 88.3% of the people. 43.5% can relax best
with calm music. Just over 40 percent of the people indicate that they can
concentrate better while listening to music.

Preferences for what music to listen to are influenced by many factors.
Most people (81.5%) indicate that music should match the mood one is in.
For only 20.1% of the people, musical preferences of the people in their close
environment is preferred to other music. 25.8% indicate favoring listening to
recent hits. 31.3% of the people listen to other music in the evening than
during daytime. The weather is said to influence the choice of music for 27.1%
of the participants.

The majority of the people regularly get back to ‘similar’ music; 77.0% often
listens to the same music, 67.6% often listens to music of once specific genre
and 50.8% often listens to music of one specific artist. 45.6% of the participants
often return to music one specific mood. 75.3% indicated to appreciate listening
to different styles of music, which may also be music that is new to the listener
(65.5%).
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Active listening Passive listening Universal listening

1 Variation 1 Volume 1 Volume
2 Same mood 2 Same mood 2 Variation

Known songs 3 Harmony 3 Known songs
3 Volume 4 Known songs 4 Same mood
4 Harmony 5 Variation 5 Similarity

Table 3.2: Playlist feature preferences for three listening modes.

Playlist preferences

In the part of the questionnaire dealing with playlists, the participants are
split in two groups. The first group consists of the people that indicate to
have different criteria for judging playlists in an active listening mode and in
a passive listening mode. The second group indicates not to have different
criteria for both listening modes. This will be referred to as the universal
listening mode. Both groups were asked which criteria out of a list of 12
possible criteria are important for a good playlist. For the first group (69% of
the participants), this question was asked both for the active and the passive
listening mode.

The most frequently named properties for all listening modes are listed in
Table 3.2. The top five of the active and passive listening group contains the
same properties, the universal listening group trades ‘harmony’ for ‘similar-
ity’. For the active listening case, variation stands out of the other criteria:
it is named by 47.5% of the participants, with the next properties follow-
ing at 36.1%. For the other listening modes the difference between the most
and second-most frequently named feature preference is not larger than 3.4%.
Except for the variation criterium for the active listening mode, the same ten-
dencies for all three listening modes can be observed.

In the next question, the participants are asked to judge the importance of
eight properties of playlists; songs in a playlist should have: same instrumen-
tation, similar rhythm, similar tempo, similar sound, same genre, same year
of production, same mood and clear tension-curves or structure. The question
was answered only for the most characteristic listening mode of the partici-
pant. 41% answered the question for the passive listening mode, 59% for the
active listening mode. Each criterium could be scored as ‘very important’,
‘important’, ‘less important’ and ‘not important’.

The answering patterns for both active as passive listening again show the
same tendencies. For the passive listening mode, all criteria are rated more
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Figure 3.6: Pearson’s r correlation of playlist properties for the different lis-
tening modes.

important as for the active listening mode. This is in line with the expectations,
since variation scored very high for the active listening mode in the previous
question. The only feature that was rated as ‘not important’ by the majority of
the participants was the year of production. The tension curves and structure
of a playlist was rated more important for the active listening mode.

The feature preference listed in Table 3.2 are assumed to be related with
the feature importance judgments of the individual participants. This relation
has been analyzed using the Pearson’s r correlation measure. In Figure 3.6,
the individual correlations for the variation and similarity properties for the
three listening modes are shown. The correlations are weak, although there is a
relation, there is wide variance between the individual importance judgements.
The group of participants judging ‘variation’ as important, shows the expected
negative correlation with almost all similarity criteria for the active and passive
listening mode. This group generally finds a playlist structure more important.
Participants indicating ‘similarity’ as important property of playlists generally
find the similarity criteria for playlists more important. The active listening
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mode for ‘similarity listeners’ shows weak negative correlation with the playlist
structure.

3.4.4 Summary

We were interested in the criteria used by people for judging song or genre
preferences. Contrary to the expectations, these criteria are not the same:
song mood, melody and rhythm are the most frequently named criteria for
genre preference, while song preference is judged mainly by melody, vocals
and feelings associated with the song.

The criteria for judging playlist quality are more or less the same for the
three distincted listening modes. The users differentiating between active and
passive listening, rated ‘variation’ to be the most important property for active
listening, for the passive listening mode, this property is found at fifth’ rank.
Surprisingly, ‘volume’ was named very frequently, it shows up within the top
three for all listening modes.

Using the participants genre preference data, a graph with genre similarity
relations was created. This can be used as a source for genre distances in
constraint satisfaction algorithms for playlist generation.

3.5 Playlist quality criteria

In the first section of this chapter, the principles of current playlist generation
algorithms have been presented. Nearest neighbor, collaborative filtering and
other approaches were explored. The second section presented the results of a
user survey on music listening behavior, music and playlist preferences. In this
section, the evaluation methods for the current generation of playlist generation
systems are analyzed. The playlist quality criteria found in the user survey are
analyzed with respect to application in automatic playlist generation systems.

3.5.1 Current methods

Playlist generation algorithms have been evaluated using both quantitative
and qualitative methods. The quantitative approaches measure performance
in terms of computational complexity or the number of user actions needed to
generate a playlists. Qualitative playlist quality studies aim at measuring the
perceived quality of playlists and thus involve user evaluations.

Both Logan and Salomon [55] and Pohle et al. [92] use high level metadata
for evaluating the relevance and consistency of the generated playlists. Logan

60



3.5 Playlist quality criteria

and Salomon use genre and artist labels and count the average number of
returned items with the same genre or artist within the closest 5, 10 or 20
nearest neighbors. Within the list of nearest neighbors, there is no quality
criterium on subsequent songs. An ‘optimal playlist’ according to this measure
thus consists of songs only of the same genre or artist. Pohle et al. use short
time and long time genre consistency for comparing different playlist generation
algorithms. Again, the criterium for quality of a playlist is optimized when only
songs of one single genre are returned. A first step away from just returning the
most similar songs is the ‘artist filter’: within n tracks, an artist is only allowed
to occur once. Both measures do actually measure the quality of how well the
similarity measure captures the similarity defined by the music metadata. No
quality measure for the playlists as such is used.

Pampalk et al. [82] measure performance of various dynamic playlist gen-
eration algorithms on the amount of user input needed to fulfill the demands
of three use-cases. The use-cases are based on genre and artist similarity. Sug-
gested songs that do not fit in a use-case profile are skipped. The number of
skipping actions needed to create a playlist of 20 songs is a measure for the
quality of the playlist generation algorithm. The E-Mu jukebox by Herrera
et al. [39] is evaluated by 22 test persons who were invited to create a playlist
of ten songs. The only criterion given was the quality of the playlists. The
performance of the system was evaluated with both objective and subjective
measures: The time spent and the number of actions needed for creating a
playlist are measured. The perceived quality and ease of use of the system are
analyzed. The quality of the systems is assessed by measuring the amount of
user input, or the time needed to adapt the settings in order to create a satis-
factory playlist. This again is no objective quality measure of the playlists as
such. Instead, the adaptivity of the algorithm and the quality of the similarity
measure are rated.

Playlist generation algorithms based on constraint satisfaction allow posing
constraints on the individual relationships between songs in a playlist. These
methods have been analyzed with respect to their computational complexity.
Aucouturier and Pachet [5] pose that ‘the quality of the playlists generated with
regards to some user preferences [. . . ] depends on the quality of the musical
metadata [. . . ] involved in these preferences’. Since constraint satisfaction
based systems can work with arbitrary sets of constraints, indeed any playlist
can be created when the metadata are of high quality and detail. Evaluating
qualitative playlist quality thus merely describes how well the metadata catches
the preferences of the user and if the available constraints on song sequence in
the playlist can capture the user preferences.
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Figure 3.7: Thayer’s model of mood, after [111]

3.5.2 User Survey

The playlist feature priorities listed in Table 3.2 show that both similarity
(same mood, similarity) and variation are important properties of playlists
for the different listening scenarios. These two properties are in conflict with
each other when restricted to one single aspect of music similarity. Similar
to the correlation analysis for variation and similarity in Figure 3.6, a corre-
lation analysis on the other feature preferences with the feature importance
judgments was performed. It was expected that preference for similarity on a
certain feature is correlated with the importance judgments of the other fea-
tures. When these correlations exist, a set of similarity and variation criteria
can be created.

The strongest cross-feature Pearson’s r that was found, occurs between
‘same genre’ and ‘similar sound’ at r = 0.3 for the universal listening mode.
We therefore conclude that, for the group of user survey participants, there
is no significant correlation between the similarity or variance preference and
importance ratings. The participants’ demands on playlists thus show too large
variation to be captured by a small set of universal playlist quality criteria.

Some constraints on the songs in a playlist can still be posed, using the
results of the questions on common listening behavior. Since the large major-
ity of the participants (81.5%) indicated that music should match the mood
one is in, mood continuity is a possible general playlist criterium. Liu et al.
[51] and Tolos et al. [113] successfully performed mood classification using the
model of mood defined by Thayer [111]. This model (see Figure 3.7) spans an
emotional space by two orthogonal dimensions: activation and quality. Tolos
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et al. performed a human mood classification experiment and found that there
was low agreement between the ratings in the lower half of Thayer’s model.
It is suggested to only use three mood categories: ‘Happy’, ‘Agressive’ and
the combination of ‘Melancholic’ and ‘Calm’. They compare the user’s ratings
with automatic classification using a small set of timbral features and find that
the automatic classification error is about as large as the level of disagreement
in the human classification results. Liu et al. use a combination of timbral,
rhythmic and ‘intensity’ features, where the intensity feature represents the
volume of the music. A two-stage classification procedure, first classifying the
activation dimension using the intensity feature and then classifying the quality
dimension using the timbral and rhythmic features is proposed.

3.5.3 Summary

In this section we described that current content based playlist generation sys-
tems have been evaluated using artist and genre consistency as main criteria.
These consistency measures express how well an audio similarity measure per-
forms on genre or artist clustering tasks but are no criteria for the quality
of a playlist. Constraint satisfaction approaches have not been evaluated on
playlist quality, but on computational complexity. Playlist quality depends on
the quality of the metadata and the available constraints.

The user survey provided no clear playlist quality profiles, but one con-
straint can be posed: songs in a playlist should match the current personal
mood. Mood classification experiments using timbral, rhythmic and intensity
features showed to be succesful [51, 113]. Succesful music genre classification
systems make use of feature sets that exactly cover the domains that are also
used by mood classification algorithms. Since both genre and mood classifica-
tion make use of comparable feature sets, mood continuity and genre continuity
may largely have similar effects on playlist quality.

The discrepancy between similarity criteria and the request for variation
remains. In order to deliberately apply variation in a playlist, it is of vital im-
portance to know what exactly is similarity in the first place. When ‘variation’
can be expressed as ‘music with a certain distance to each other’, content based
playlist generation systems are very well able to generate playlists balancing
on the borders between similarity and variations.

63



Playlist Generation

3.6 A new approach to playlist generation

The methods for playlist generation that are presented in this chapter, show
that there are many possible strategies for selecting songs out of a large music
database. In this section, the demands on the playlist generation system that
was developed in the course of this research are presented. An architecture for
the new procedure is proposed and the main functional blocks are discussed.

3.6.1 Demands

The questionnaire shows that it is impossible to define a universal set of playlist
quality constraints. A playlist should contain similar songs, but at the same
time have enough variation not to be boring. In order to consciously apply vari-
ation, one must first know what music is perceived as being similar. The first
demand on the playlist generation system thus can be formulated as follows:

A content-based playlist generation system should be able to find sim-

ilar music.

The six music listening modes defined by Rauhe et al. [96] show the wide
range of possible similarity criteria. Depending on the mode, the user may
pay attention to the acoustic surface of the sound (diffuse reception), or focus
on feelings associated with the music (associative-emotional reception). To
encompass for individual similarity perception, the music similarity measure
should be adaptable to the user’s notion of similarity. User-controlled similarity
measures showed to be appreciated over fixed similarity measures by Vignoli
[119]. The second demand on the system can be formulated as:

The music similarity measure should be adaptable by the user at
playlist generation time.

Since the storage capacity of media devices is ever increasing, scalability
of automatic playlist genertion systems is an important issue. Personal music
collections with over 5000 songs are not uncommon anymore. Even on these
large collections, the playlist generation should be fast. Processing times of up
to a maximum of one second are not perceived as annoying. The user’s flow of
thought is not interrupted (Nielsen [72]). Processing time is not only relevant
at playlist retrieval time. When a feature extraction or similarity training
phase is needed, these should be of reasonable speed as well. Since these issues
become more important at large systems, we can formulate the third demand
as:
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Figure 3.8: Playlist generation architectures

The playlist generation system should scale well on large music collec-
tions

These three criteria will be the main design criteria for the new playlist
generation system.

3.6.2 Proposal

In the previous sections, the current generation of playlist generation systems
is presented, the user demands are analyzed and the requirements on a new
playlist generation system are defined. The common architecture of the current
generation of playlist generation systems is shown in Figure 3.8(a). A (set of)
features is extracted from each song. The feature extraction phase is followed
by a data reduction phase in which a probability density model of the features
is generated (e.g. [3, 56, 80]). Using a suitable distance measure, a full song
distance matrix is calculated. This distance matrix expresses the feature based
similarity between all songs. The distance matrix serves as input for the playlist
generation heuristic (e.g. [55, 80, 92]).

The disadvantage of the approach based on full distance matrices is the
scalability. The distance between all song pairs has to be calculated. The size
of the distance matrix is proportional with the square of the number of songs.
With an asymmetric distance measure, a 5000 song distance matrix thus has
25 million entries. If new song gets added to the music collection, the distances
to all songs already in the collection have to be (re)calculated.

In the proposed architecture (see Figure 3.8(b)), the distance matrix is
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replaced by a self organizing map. Self organizing maps have been used in
MIR systems for visualizing music databases and show good song clustering
results. Mitri et al. [65] and Mörchen et al. [70] each use a fixed feature set
to project the songs onto the map. Pampalk [77] trained several aligned SOM
layers with different feature weighting, which allows visual browsing of a music
collection for different similarity criteria.

The traditional playlist generation architecture uses the song distance ma-
trix to find similar songs. In this thesis, the possibilities of using a SOM for
playlist generation are explored. The assumed advantages of this approach are:

Finding similar music: Self organizing maps are capable of mapping high
dimensional data to a low dimensional space, keeping distance relation-
ships approximately intact. Given an appropriate featureset, ‘similar’
songs are thus mapped close to each other in the map. Finding simi-
lar songs thus only requires searching the neighbourhood of a song in
the map, and not the entire database. To better represent the songs in
the SOMs, the neurons contain Gaussian mixture models trained on the
features.

Adaptable similarity measure: By training multiple SOMs on different
features (equivalent to the work of Pampalk [77]), different similarity
concepts are easily available at playlist retrieval time. By weighted lin-
ear combination of song distances on the SOMs, the similarity measure
can be adapted to user needs.

Scalability: The proposed approach does not need a full song distance ma-
trix, but requires only the mapped position of each song in the SOM.
The amount of datapoints thus scales linearly with song database size,
and not quadratic as in the distance matrix case. Since the mapped
song coordinates are discrete values, neighbouring songs can be easily re-
trieved using efficient database queries. When adding a new song to the
database, only the best matching neuron in the SOM has to be found.
Typically, the number of neurons in a SOM will be much smaller than the
amount of songs in the database. Pampalk [76] recommends the number
of neurons to be in the range of

√
n, with n the number of data items.

3.6.3 Justification

Self organizing map based mappings of songs provide an intuitive method for
exploring music databases (Rauber and Frühwirth [95]). The use of appealing
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visualisations (e.g. Islands of Music, Pampalk [76]) further reduces the barrier
of exploring new regions in unknown music databases. Pohle et al. [92] used
circular SOMs for playlist generation, and found that after applying an artist
filter, the generated playlists using the SOMs performed very good on a short-
and long-term concistency quality measure.

Still, the performance of self organizing maps for music organization is
limited. Each neuron in a SOM can only contain a single vector, which limits
the song representation accuracy. Rauber and Frühwirth [95] uses a two-stage
SOM mapping: the first stage SOM is trained on the raw feature vectors of
the entire database. At the second stage, the feature vectors of one song are
mapped to the trained SOM. Of each neuron in the SOM, the number of times
it was selected as best match to an input feature vector is counted. These best
match counts for the entire SOM form the ‘neuron activation pattern’. The
neuron activation patterns for each song in this first SOM are used to train the
second SOM. Pampalk [76] has evaluated different strategies, using indexes of
characteristic feature models and simple mean feature values over entire songs.
Pohle et al. [92] use the first 30 components of a principal component mapping
of each column of a full song distance matrix.

To extend the song representation accuracy in a SOM, it would be desirable
to allow for more complex song models in the neurons of a SOM. This is possible
as long as the two codebook requirements that are presented in Section 2.3.6
are met: There is a distance function to express similarity between training
data and codebook entries and there is an algorithm that allows to adapt the
codebook entry to better represent the training data.

Single Gaussians and Gaussian mixture models perform very well on music
similarity tasks [59, 78, 79, 90]. To the best of my knowledge, both single Gaus-
sians and Gaussian mixture models have not been used as codebook entries in
self organizing maps thus far. For single Gaussian models, both codebook en-
try requirements are met: similarity can be measured by the Kullback-Leibler
divergence [87] or by just taking the euclidean distance over the means of
the Gaussians. Two Gaussians can be made more similar to each other by
linear combination of the Gaussian mean and covariance matrixes. For Gaus-
sian mixture models, multiple distance measures or approximations thereof are
available. Berenzweig et al. [14] use EMD, ALA and centroid distances, Aucou-
turier and Pachet [4] use Monte-Carlo sampling. For the second requirement,
however, no adequate method is known.

Background estimation processes in video surveillance applications use
adaptive mixture models [108, 129]. These methods are designed to slowly
adapt a mixture model to sequential single input samples. To realize signif-
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icant changes in a mixture model, a high number of samples is required and
in order to accurately represent a song, a high number of samples have to be
drawn from a song model. For determining model similarity using Monte-Carlo
sampling, Aucouturier and Pachet [6] recommend using at least 1000 samples
for a mixture model consisting of 3 Gaussians in 8-dimensional space. For ac-
curate sequential adaption, a even higher number of samples can be expected
to be necessary. In Section 4.4 a heuristic is presented that allows updating
a Gaussian mixture model to better match a second Gaussian mixture model
without having to draw random samples from one of the mixtures.

Once all songs are mapped in the SOM, the playlist generation heuristics
as presented by Pampalk et al. [82] can be used. Instead of navigating through
the origininal feature space, the heuristics now use the low-dimensional SOM
space.

The entire process from signal analysis to playlist generation now consists
of the following steps:

1. Extract the desired features from the audio data and build statistical
model per song.

2. Train SOM using a set of representative training data.

3. Map all songs to the trained SOM.

4. Select playlist seed song and find position in SOM.

5. Query for neighbouring songs in SOM.

6. Apply playlist generation heuristics.

To allow individual similarity measures for different users, the neighbouring
song query can be combined over multiple SOMs, trained on different features
as shown in Figure 3.9. The distances of each song pair in the individual
SOMs are weighted with a set of personalized weight factors and summed up.
The resulting list of neighbouring songs thus depends on the individual feature
weightings. Since these distance computtations are in the low-dimensional
SOM space, they can be performed real-time.

3.7 Summary

This chapter provided insight in playlist generation systems. In the first sec-
tion, different use-cases for playlists and the accompanying user demands on
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wi
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∑

Figure 3.9: Combining multiple SOM mappings for playlist generation. The
fields shaded red contain a playlist seed song and all songs within the yellow-
shaded fields belong to the neighbourhood of the seed song. By applying
weights wi, wj and wk for each user, a personal notion of similarity can be
realised for each user.

these playlists is analyzed. A short tour in the psychological aspects of listen-
ing to music shows the benefits of selecting music matching the personal taste
and preferences of a listener.

Section 3.3 presented a review of current playlist generation algorithms.
This section is followed by a report of a questionnaire on user’s listening behav-
ior and requirements on personal playlists that was developed and performed
during this research. It shows that the participants of the questionnaire use a
wide range of playlist quality criteria. These criteria are largely the same for
three identified listening modes.

In section 3.5 the quality criteria currently in use for evaluating the quality
of playlists generated by automatic playlist generation systems are discussed.
The results of the user survey are analyzed with respect to quality criteria. It
is reasoned that playlist consistency with respect to genre labels is a reasonable
method to evaluate playlist quality.

The last section presents the new approach for playlist generation that was
developed in the course of this research. Using a SOM for mapping high dimen-
sional song models to a low dimensional space allows efficient neighborhood
queries. Combining several SOMs by using a weighted sum of SOM feature
distances can provide each user with an individual similarity measure. This
similarity measure can be adapted real-time.
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Chapter 4

Design

4.1 Introduction

In the previous chapters, the basics of content based music genre classifica-
tion and playlist generation systems were described. Section 3.6 describes the
new approach to playlist generation that was developed in the course of this
research. In this chapter, the realization of the system is described.

Section 4.2 describes the general architecture of the framework that has
been developed. The requirements on each component of the framework are
analyzed and the structure of the main elements is described. The next section
describes the principles of model complexity estimation: a first step towards
reducing model complexity for each individual song. Section 4.4 presents the
design issues for using self organizing maps with Gaussian mixture models and
section 4.5 shows how to use these self organizing maps for efficient playlist
generation. The chapter ends with a short summary.

4.2 Framework Architecture

4.2.1 Introduction

Apart from the perceived quality of a generated playlist, other research and
design criteria also play a major role when designing a complete content-based
playlist generator framework. The (subjective) playlist quality criterium be-
comes far less critical when generating a short playlist takes several hours while
the user only wants 15 minutes of music but starting right away.

In the previous chapters, the individual components of content based
playlist generation systems are introduced, in this section they are placed
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Figure 4.1: Identification of playlist generation process steps

in the context of the entire framework. The presented architecture aims at
realizing a system that realizes the following design criteria:

Quality: The system shall use state of the art methods for determining music
similarity, and aims at obtaining robust, personal music playlists.

Flexibility: The system shall be easily extensible with new content-based
features, without having to recompute previous music similarity results.
Adding new music to the database does not require re-analyzing the
entire database again.

Portability: The system aims at reducing the amount of data to be stored to
a minimum, to allow operation on portable devices.

Speed: The system implements efficient music similarity measures at playlist
generation time.

In this section, the general framework architecture is described. The major
functional blocks are placed in their context and the program flow is explained.

4.2.2 Architecture design

Before designing a playlist generation framework, all functional blocks have to
be identified. The simplified architecture of Figure 3.8(a) shows the elements
of a traditional playlist generation system: features, distance and playlists.
The operations that have to be performed in these elements can be designed
to fulfill the four design criteria. These operations are shown in Figure 4.1. It
are these processing steps that form the three main functional blocks of each
content based playlist generation system.

The four design criteria (quality, flexibility, portability and speed) are not
of equal importance to all of the main three functional blocks of the playlist
generation system. In Figure 4.2 the critical criteria for the three functional
blocks of a playlist generator framework are identified. In the following para-
graphs, these criteria are explained in more detail.
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Figure 4.2: Identification of critical criteria for the three functional blocks of
a playlist generator framework. The semitransparent selections indicate that
corresponding criterium is important for the functional block, but that it is
not a main criterium.

Quality criterium

The quality criterium states that the system shall use state of the art methods
to obtain robust, personal music playlists. This criterium is most important
to the feature extraction and similarity calculation blocks. In order to be able
to generate a ‘good’ playlist, the system has to be able to reliably identify
‘similar’ music or music that is preferred by a user. Of the factors influencing
music similarity or preference perception that are described in Section 2.2, only
the audio content is available for content based similarity analysis.

Even if the rules for creating a ‘perfect’ personal playlist based on a de-
tailed representation of the audio signal would be known, systems need an
accurate description of the audio signal and measures that are able to express
the personal similarity perception based on these descriptions. The feature
extractor thus has to be able to extract at least the most relevant features that
are in use for music similarity tasks. These features have to be accessible to
similarity measures, to express the similarity between two individual songs as
a function of the personalized weighted sum of similarities measured on the
individual features.

The playlist generation step itself is also identified as being a relevant pa-
rameter for overall quality of the playlist. Since any playlist that is automati-
cally generated based on a content based music similarity analysis ultimately
depends on the quality of the expressed music similarity, the quality criterium
is more relevant for the first two functional blocks.
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Flexibility criterium

The flexibility criterium has a twofold goal: it aims at keeping the music
similarity measures used for generating the playlist up-to-date with the newest
available features and the system shall allow single songs to be added to a
music collection without having to recompute an entire similarity matrix over
all songs in the database. This criterium thus poses constraints on all three
functionality blocks: the feature extractor must be easily extensible with new
features, the similarity calculation must be able to use new features, and the
playlist generation part must not require a full song distance matrix expressing
the individual song distances for all songs for the current set of features.

These constraints thus require strong modularity of the feature extraction
and similarity calculation parts of the framework: adding a new feature to the
feature extraction functional block should not require an entire rewrite of the
block, but should allow reuse of functions and intermediate results of other,
similar features. The features should be available to the similarity calculations
in an abstract container format that allows expression of similarity based on
each individual feature, independent of the feature format and value range.

Portability criterium

The mass market for media players is dominated by portable devices. Unlike
home or desktop systems, the computational power and the available resources
on these devices is quite limited. The amount of data to be stored that is nec-
essary for similarity calculations thus should be kept to a minimum, while
keeping the quality of the description as high as possible. Compact data de-
scriptions both save storage space and reduce the complexiness of operations
on these data: many distance measures between data models have a complexity
that is linear or even quadratic with the level of detail of the data description.

To some extent, the music similarity relations required for playlist gen-
eration algorithms can be calculated off-line: Similarity relationships based
on individual features can be pre-calculated on a desktop system, the result of
these pre-calculations can be used by a playlist generation algorithm at playlist
generation time on the portable device.

Playlist generation algorithms based on a full song similarity matrix do
not scale well: the size of the similarity matrix increases quadratically with
the number of songs in the song database. Algorithms not requiring a full
song similarity matrix thus are preferred.
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Speed criterium

One of the major annoyances of using portable devices with limited compu-
tational power is having to wait for a result of user input. Response time is
one of the most important criteria for user acceptance [103]. Of the entire pro-
cess of playlist generation, only the actual playlist generation is time-critical.
A personal music collection does not change every minute, feature extraction
and pre-calculation of partial song similarities have only to be performed on
adding a song to the collection. For the actual playlist generation algorithm
to be fast enough, it should operate on an absolute minimum amount of data:
song representations should be as compact as possible and wherever applicable,
song similarities should be pre-calculated without using flexibility for applying
user-adaptable similarity measures.

Proposed framework architecture

Not all of the four design criteria pose restrictions on the framework architec-
ture. The quality criterium only states that the features and similarity mea-
sures to be used should be state of the art. The flexibility criterium requires
a modular music similarity measure and no full distance matrices at playlist
generation time. The portability and the speed criterium both aim at data
reduction, where the speed criterium is more relevant at playlist generation
time. Since speed is not an issue at feature extraction time, an architectural
separation between the feature extraction and playlist generation process lies
at hand.

The architecture that was designed to meet the design requirements, con-
sists of three major functional blocks, depicted in Figure 4.3. The feature
extraction and modeling module provides a set of modules for extracting a
range of low level features and modeling those features as a first data reduc-
tion phase. The central song(model) management block stores the song feature
models and metadata in a database and provides access to the data for the
playlist generation module. This third module implements a self organizing
map for mapping the songs to a low dimensional space, and provides playlist
generation heuristics. These three functional blocks will be described in detail
in the following sections.

4.2.3 Feature Extraction and Modelling

The task of the feature extraction and modelling module is to access and
decode the audio files and then extract the selected features from the audio

75



Design

Feature extraction
and modelling

Song (model)
management

Playlist
generation

Decoding audiofiles
Windowing
Feature extraction

Modelling
-complexity estimation
-EM

Accessing audiofiles
Metadata management
Feature management

Complexity reduction
Similarity measures
Playlist heuristics
User preferences
Accessing audiofiles

Figure 4.3: Principal components of the playlist generation framework archi-
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Figure 4.4: Program flow of feature extractor

data. The feature extraction phase is followed by a feature modelling stage.
After modelling, the feature models have to be made available to the rest of
the framework. The program flow within the entire feature extraction and
modelling module is shown in Figure 4.4.

Structure

The module was implemented as a separate executable, consisting of the com-
ponents as shown in Figure 4.5. The first module reads the extraction and
modelling parameters from the command-line. These parameters are passed
to the network management module. This module has the task to initial-
ize the signal processing components in the module and allocate and manage
the required buffers to store intermediate and final feature values and models
thereof. After processing and modeling the features of a single song, the results
are written to either an XML or a Matlab file.

Feature Extraction Components

The feature extraction process is mapped to a small number of modules per-
forming basic operations on the signal flow. The audiofile is first converted to
a series of samples. Features based in the time domain (e.g. ZCR) directly
access these sample series. For frequency-based features the time series are
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Figure 4.5: Feature extractor components

windowed using a Hann or raised cosine window before performing an FFT.
During the experiments on playlist generation, a windowsize of 20 milliseconds
was used. After processing one window, a next window is formed by shifting
the time offset by 10 milliseconds.

Feature Modeling Modules

The feature modeling modules allow modeling the extracted features with a K-
means model or with a Gaussian mixture model. Selecting the initial clusters
of a K-means model has large impact on the quality of the model (see Peña
et al. [86] for a comparison of several methods). The framework implements a
variation of the Kaufman initialization algorithm: K samples are selected that
have a maximum distance to each other. These samples are selected from a
random subset of the data. The Gaussian mixture modeling module uses the
K-means modeling module for initializing the initial cluster positions.

The major disadvantage of traditional KMM and GMM approaches, is that
the number of clusters for modeling a dataset has to be known in advance.
When not specifying a number of clusters, the framework uses the basic se-
quential algorithmic scheme (BSAS, see page 84) algorithm to determine the
number of clusters to use and initialize the initial means.

Output

The extracted features and feature models have to be made available to the
rest of the framework. To this goal, the MPEG-7 standard has been used.
This standard provides an XML scheme for multimedia content description
(see Martinez et al. [60]). The raw features can also be exported to a Matlab
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Figure 4.6: Song (model) manager components

data file for easy visualizations.

4.2.4 Song (model) management

The task of the song (model) management module is to manage a database
with song data, to call the feature extractor for extracting the desired feature
data and import them into the database, and to make the feature models
available to the playlist generation module.

Structure

The song (model) management module consists of three blocks, as is shown
in Figure 4.6. The data retrieval block allows the user to select the features,
parameters thereof and modeling options using a graphical interface. Once
the data retrieval component is started, the path and names of the files to be
analyzed are retrieved from the data management module and the settings are
converted to the commandline syntax of the feature extractor. After extracting
and saving the desired features of one file to disk using the MPEG-7 XML
format, the data are parsed by the XML parser of the data retrieval block and
then presented to the data management module.

The data management module keeps the database structure up-to-date and
extracts and stores additional song metadata from each song. These metadata
include artist and album name, track numbers and song genres. These data
are read from the ID3 tags available in most mp3 files.

Song models and metadata can be retrieved from the database by the
functions of the data access module. The data are available by ID or by path
and filename.

Database structure

The database is implemented as a relational database, using linking tables
to link each song to its author, album and other data. The entire database
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Figure 4.8: Architecture of the playlist generation module

structure is shown in Figure 4.7. Each song’s feature model is stored in the
corresponding feature table. The SongID/SOMID table stores the mapping
of a song in a self organizing map used for playlist generation, which will be
described in the next section.

4.2.5 Playlist generation

The ultimate task of the playlist generation module is to generate the music
playlists based on the song feature model based data. Since the speed criterium
is important mostly at playlist generation time, an additional data reduction
phase is introduced in this module. This data reduction is performed by map-
ping the song feature models to a low dimensional space in a self organizing
map, see Section 3.6.2 for an outline of this procedure.

Structure

The playlist generation module consists of three components, shown in Figure
4.8. The two central components are the song mapping and the playlist gener-
ation blocks. In the SOM mapping module, the high dimensional song feature
modules are mapped to a two-dimensional self organizing map.
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Song mapping

Since the standard SOM implementations only work on vector data, and not on
Gaussian mixture models, an algorithm enabling the use of GMMs in SOMs
was designed. This algorithm is presented in Section 4.4. After training a
SOM, the mapped song positions are stored in the database. Each entry in the
database consists of four integer values: the song ID, the SOM ID, and two
integer coordinates in the SOM.

Playlist generation

The playlist generation block uses the mapped song positions to determine song
similarities, songs lying close to each other in a SOM have a high similarity.
Multiple SOMs, trained on different features, can be combined to obtain a
(personal) weighted song similarity measure. The process of playlist generation
is described in more detail in Section 4.5.

4.2.6 Operational architecture

The architectural elements described in the sections above all constitute part of
the necessary signal processing chain. As the software framework is designed
for experimenting with playlist generation, it allows experimenting with the
individual components and reusing previously computed results. In order to
generate a playlist the following steps have to be performed:

The first step is to select the features and feature parameters that are to be
extracted from a set of songs. Multiple features can be extracted in one single
run, for later processing using multiple SOMs. After selecting the features,
the modelling parameters for the EM algorithm for calculating GMMs of each
song’s features have to be set. The last step of the feature and modelling
phase is to select the location where the songs are located and start the feature
extraction phase. The extracted features are saved in a database as shown in
Figure 4.7.

After the features have been extracted, the size and training parameters
of a new SOM can be set. These parameters include the number of training
iterations to be performed and the distance measure that is to be used for de-
termining song model similarity. Instead of using randomly initialized neurons,
a set of songs can be selected for initializing the neurons with. Once the SOM
is initialized with existing song models, a larger set of songs can be selected for
training the SOM. After successfully training a SOM, the SOM can be saved
to a database for later use. The size of the SOM in the database only depends
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Figure 4.9: Screenshot of the framework interface

on the number of songs mapped to the SOM: each song requires four integer
values. The actual size in bytes depends on the database implementation.

When one or multiple SOMs have been trained and saved in a database,
playlists can be created. As described in Section 4.2.5, one or multiple SOMs
that are stored in the database can be selected. After selecting the database(s),
a seed song can be picked from the list of songs in a SOM by doubleclick.

4.3 Model complexity estimation

4.3.1 Introduction

In the study on music similarity measures performed by Aucouturier and Pa-
chet [6], the number of clusters of the statistical models of the song features,
was identified as being a parameter to be optimized. Based on the Occam’s
razor theorem, which states that the explanation of any phenomenon should
make as few assumptions as possible, while attaining a certain accuracy about
the observed phenomenon, information criteria have been developed that yield
an optimal tradeoff between model complexity and accuracy of the model. In
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this section, several optimization criteria are described, algorithms for opti-
mizing these criteria are discussed and the implemented method is presented.

4.3.2 Optimization criteria

Let Mk be a class of models having k free parameters (Θ). The quality of fit
of a model of class Mk on a dataset S can be expressed by the ML criterion.
The maximized likelihood estimate on the data is a non-decreasing function
of k since Mk ⊆ Mk+1. Finding a good model for representing the data S
thus seems to be a case of using a model with many free parameters (complex
models): the ML estimate is ever increasing.

The problem with models of high complexity is their lack of generalizing
properties. The data the model is trained upon may be fitted very well, but
other data generated by the same source is not represented well. This problem
is called overfitting. There are various criteria available for expressing the
‘optimality’ of a model, where an ‘optimal’ model has a certain tradeoff between
goodness of fit of the data, and the number of parameters of the model: The
number of parameters is selected according to criterium:

k̂ = arg min
k

{C(Θ̂(k), k)}, k = kmin, . . . , kmax (4.1)

with C the criterium function, consisting of a part rewarding the goodness of
fit of the model and a part penalizing a high number of parameters.

Bayesian Information Criterium

The Bayesian information criterium (BIC) [106] consists of the maximum like-
lihood estimate of the model on the data and a penalty function dependent on
the number free parameters and the number of samples in the dataset:

BIC = −2 log(p(S|Θ̂ML) + k log(n) (4.2)

with S the dataset, Θ̂ML the set of model parameters, k the number of param-
eters in the model and n the size of the dataset. Minimizing the BIC yields a
maximally informative model.

Minimum Description Length Criterion

The Minimum Description Length (MDL) criterion [98] is based on the concept
of Kolmogorov complexity. This concept states that data compression is a form
of learning regularities of the data. The shortest representation of data S is
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given by a program Θ written in a general purpose programming language,
that outputs the datasequence S. According to Shannon, the shortest length
for representing p(S|Θ) is given by −⌈ 2log(S|Θ)⌉ (bits). For decoding these
data, the recipient must also know the program Θ. The entire length required
for encoding and transmitting the data is thus given by:

Length(Θ,S) = Length(S|Θ) + Length(Θ) (4.3)

which is the criterium that MDL is trying to minimize.

The optimal number of model components c according to the MDL criterion
can be found by:

ĉMDL = arg min
{

− log p(S|Θ̂(c)) +
c

2
log n

}

(4.4)

which is equivalent to the minimization problem of the BIC.

4.3.3 Algorithms for complexity estimation

There is a variety of algorithms for complexity estimation available. In this
section, several different concepts are described.

X-Means

X-Means (Pelleg and Moore [85]) is an extension of the traditional K-means
algorithm that makes use of the BIC to estimate the optimal number of clusters
given a certain dataset. The algorithm consists of a parameter optimization
phase and a structure optimization phase, that are repeated iteratively. The
parameter optimization phase works like the traditional K-means algorithm:
given the current cluster means, the average squared distance from data points
to their cluster means is optimized. After this optimization phase, the model
structure is adapted: Each cluster is split in two clusters, and a K-means
algorithm is ran on these two clusters to divide the data points originally
belonging to the ‘parent’ cluster between the two new clusters. Determining
whether the split was successful is done by assessing the BIC for both the
splitted and original configuration. After each parameter/structure iteration,
the BIC score is saved for that configuration.

This entire process is repeated for K starting at a lower bound until a
maximum K is reached. The optimal model is the model that has the lowest
overall BIC score.
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Gaussian Merging Splitting

The Gaussian Merging Splitting (GMS) algorithm (Sankar [104]) is an iterative
algorithm that can both split and merge Gaussians. The number of Gaussians
to split can be limited to a fixed number, only the Gaussians with the highest
variances are split.

The Gaussian merging is performed with an agglomerative clustering pro-
cedure. The clustering distance is a weighted function of increase in entropy
and the number of samples belonging to the two clusters. Clusters are merged
until all clusters have at least a threshold amount of data.

Figueiredo

Figueiredo and Jain [28] present a method for unsupervised learning of finite
mixture models, using the minimum message length criterion. The method
uses EM for fitting a GMM in a dataset S and starts with a high number of
mixture components. By choosing this number of components much higher
than the expected optimal number of components, the algorithm is robust
with respect to initialization: the EM is guaranteed to find a local optimum
estimate and is not able get out of a local optimum by itself.

The EM method of Figueiredo has a M-step that can annihilate components
with little support of the data. By iteratively removing mixture components
with low support from the data, it is likely that the eventual solution has
clusters there, where they are maximally supported. Since when starting with
a large number of components, there might be many clusters having little
support, a component-wise EM algorithm (CEM, Celeux et al. [19]) is used.
When the CEM algorithm with the annihilating M-step has converged, and the
number of components still is above a threshold minimum, the least probable
component is annihilated. During the entire annihilation process, the value of a
model optimization criterium is tracked for each number of components. After
reaching the minimum threshold number of clusters, the number of components
that has the best value for the optimization criterium is picked as the optimal
number of components.

Basic Sequential Algorithmic Scheme

Sequential modeling algorithms can be used for finding clusters in a dataset,
when the number of clusters is not known in advance. The most basic algorithm
is the ‘Basic Sequential Algorithmic Scheme’ (BSAS [112]). As can be seen from
the following pseudocode, BSAS only has two parameters: The threshold Θ for
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Figure 4.10: Complexity estimation flow

determining whether a new cluster has to be formed, and NmaxClust, the maxi-
mum number of clusters to be formed. With Nclust the number of clusters dur-
ing the estimation and Ci the set of samples x assigned to the cluster with index
i, the BSAS algorithm has the following steps:

1: Nclust = 1

2: C1 = {x1}
3: for j = 2 to n do

4: find Ci: d(xj , Ci) = min∀k d(xj , Ck)

5: if (d(xj , Ck) > θ) and (Nclust < NmaxClust) then

6: Nclust = Nclust + 1

7: CNclust
= {xj}

8: else

9: Ck = Ck ∪ {xj}
10: end if

11: end for

By choosing an appropriate value for threshold Θ, the number of model
clusters found by more complex algorithms can be approximated reasonably
well. The use of the BSAS for music similarity measures is assessed in Section
5.2.

4.3.4 Implementation of model complexity estimation

The number of clusters in a song model has direct influence on song model sim-
ilarity calculations, the quality of the song representations and on the size of
the extracted data. For this reasons, a model complexity estimation is imple-
mented in the framework. In [11], we describe a method using the simple BSAS
algorithm for approximating the number of clusters found by Figueiredo’s al-
gorithm (Figueiredo and Jain [28]) is described. This paper is reproduced in
Section 5.2. The signal flow in the complexity estimation block consists of the
three functional elements as depicted in Figure 4.10.

In the first block, the threshold parameter Θ for the BSAS algorithm is de-
termined. It shows that choosing Θ according to the following equation results
in an approximately equal number of components as provided by Figueiredo’s
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algorithm:
Θ =

√

trace(cov(S)) (4.5)

with the trace being the sum of the diagonal elements of the covariance matrix.
Given parameter Θ, the BSAS algorithm is used to find an initial clustering

result, which serves as input for a traditional EM algorithm. This process is
further described in Section 5.2.

4.3.5 Summary

In this section, an introduction to model complexity estimation was given. The
tradeoff between the data description accuracy and the generalizing properties
of a model was described and several optimization criteria were presented.
These criteria were followed by a selection of algorithms using these criteria
for determining the number of model parameters (the model complexity). In
the last section, the architecture of the model complexity estimation block was
shortly described.

4.4 Self Organizing Map

4.4.1 Introduction

As is described in Section 2.3.6, Self Organizing Maps can be used for mapping
high dimensional data to a low dimensional space as long as two conditions are
fulfilled:

• A distance measure with monotonic decreasing distance function between
training data and a codebook entry is available.

• There is an algorithm for adapting a codebook entry to better represent
the training data.

When using GMMs as codebook entries, only the first condition is fulfilled.
For the second condition, no applicable algorithm has been found.

In this section, an algorithm for adapting a GMM codebook entry is pre-
sented and the algorithmic details of training a SOM having GMMs as code-
book entries are explained.

4.4.2 Updating Codebook Vectors

The training phase of a SOM is a two-step iterative process: For each song
GMM in the trainingset, first the ‘winning’ codebook entry is determined, then
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this codebook entry and its neighbors are adapted towards the training song
GMM. This process is repeated for several iterations with decreasing adap-
tion strength and decreasing neighborhood size. For determining the winning
codebook entry with a GMM codebook, any distance function between GMMs
that is monotonic decreasing can be used. Given such a distance measure, the
second condition can be rephrased:

There is an algorithm for adapting a codebook entry to decrease the
distance between an instance of the training data and a codebook entry,
given a certain monotonic decreasing distance measure.

On-line adaption of GMMs

There is a multitude of algorithms available that allow on-line adaption of
GMMs (e.g. [40, 109]). These algorithms adapt a GMM as soon as new
samples are presented to the algorithm: when a new sample lies within a certain
distance of one of the clusters (usually expressed in terms of a multitude of the
standard deviation of the cluster) of the already existing GMM, this sample is
added to that cluster and its parameters are updated. When the new sample
lies outside of this threshold, new clusters can be initiated.

Song and Wang [107] introduce an intermediate step, by first modeling a
series of newly observed data values with a separate GMM. All clusters in
this temporary GMM are compared with the clusters in the existing GMM.
For each cluster in the temporary GMM, statistically equivalent clusters are
searched in the existing GMM. When these are found, the temporary cluster is
merged with the cluster in the existing GMM. Temporary clusters not having
an equivalent cluster are transferred to the new GMM. The algorithm can
create new clusters until a maximum number of clusters has been reached.

New approach

When training a SOM with GMMs as codebook entries, and having song
GMMs as training data, requiring samples for on-line updating of the code-
book entries is undesirable. Drawing representative samples from a GMM is
a computational expensive operation, in order to well represent a statistical
model, the number of samples should be large.

The approach presented by Song and Wang [107] allows merging of two
GMMs, but will eventually cause each codebook entry having the maximum
number of allowed clusters. Since the computational cost of distance mea-
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1 2

3 4

P
Q

Figure 4.11: Four steps for adapting GMMs using earth mover’s flow. P an Q
are two GMMs in a two-dimensional space. The arrows in the third step show
the flow between P and Q.

sures between GMMs are linearly or quadratically dependent on the number
of clusters in a GMM, this is not desirable.

The main requirement that the algorithms described in the previous section
do not fulfill is the lack of an adaption strength parameter, as is required for
training a SOM (see Equation 2.36). For this reason, a new algorithm that
allows to adapt a GMM to another GMM with an adaption strength factor α

has been designed. The algorithm is based on the earth mover’s distance and
uses the ‘probability mass flow’ for determining which clusters from training
and codebook GMM relate to each other.

The algorithm consists of four steps, which are illustrated in Figure 4.11.
Let P be a codebook GMM and Q a training GMM.

1. Determine the distances between all clusters of P and Q using the same
distance measure as used in the EMD. Store the distances in matrix D.

2. For each cluster in P, adapt the weight to the nearest cluster’s weight in
Q with factor α.

3. Normalize the weights in P and deterine the EMD flow between P and
Q. Store the flow components in matrix F . Calculate the cost matrix
C(i,j) = D(i,j)F(i,j).

4. For each cluster in P, adapt the mean and covariance to the cluster in Q
having the highest cost with factor α.

The details and evaluation of this method are described in Section 5.4.
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4.4.3 Training Self Organizing Maps

Once a song database, distance measure and codebook adaption algorithm
are available, several other parameters have to be set. These parameters are
the number of codebook entries and the size of the SOM, the neighborhood
function φ(t, dSOM) determining the shape and size of the neighborhood, and
the form of the monotonic decreasing function α(t).

The size of the SOM is directly related to the ‘resolution’ of the map:
the more codebook entries, the smoother the transitions between neighboring
codebook entries will be. The quality of the mapping in the SOM can be
measured with the average quantization error (the mean of ‖x − mc‖ with
x the training data and mc the codebook entries) or the average distortion
measure (the mean of φ‖x − mc‖2, with φ the neighborhood function). Note
that a SOM having the same number of codebook entries as it has training data
achieves zero quantization error when each training data item is just mapped
to one single codebook entry. There exists no general rule for estimating an
optimal number of codebook entries given the number of training data: data
of low variance requires less codebook entries to obtain the same quantization
error as data of high variance with a larger SOM.

In Section 3.4 it was shown that a playlist quality criterium is very personal,
requirements on subsequent song similarity show great variation. As the size of
the SOM determines the resolution of the similarity captured in the SOM, no
strict rule for the size of a SOM can be given. The test database that was used
consisted of 331 songs of 6 distinct genres. A SOM of 9×9 neurons showed good
clustering results on this dataset. The SOM was setup in a circular fashion:
the neuron at position (4, 0) is a direct neighbor of the neuron at position
(4, 9). The distance between two neurons is determined using the normalized
euclidean distance on the coordinates in the SOM. Since the SOM is circular,
the maximal normalized distance is 1/

√
2.

A KNN genre classification task was used for evaluating the quality of the
song mapping in the SOM for different neigborhood functions φ(t, dSOM). On
the test set, the optimal function for φ(t, dSOM) showed to be:

φ(t, dSOM) = α(t)e−500·d2
SOM·t (4.6)

Using this function, different settings for α(t), the learning rate, are explored.
Figure 4.12 shows the obtained genre clasification accuracies for different func-
tions for α(t). Functions with exponential and linear decay are evaluated.
The exponential decay variations use the base function exp(−4 · t

tmax
), the lin-
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Figure 4.12: KNN SOM genre classification results

ear decay variations use the base function tmax−t
tmax

. These base functions were
multiplied with a fixed value between [1 . . . 0.3].

The best combination showed to be the ‘low lin’ setting: the linear basis
function for α(t) multiplied with a factor of (1/3). For low values of K, classi-
fication accuracy is almost as good as for ‘lin’, but for high K, it outperforms
all other combinations. φ(t, dSOM) with this optimal value for α(t) is plotted
in Figure 4.13 for ten iterations.

4.4.4 Summary

In this section, a heuristic for adapting two GMMs using the earth mover’s
flow was presented. This heuristic allows adapting two GMMs with a factor α,
which allows GMMs to be used in SOMs. The functions used for determining
α for each iteration and neighboring distance were presented.

4.5 Playlist Generation

4.5.1 Introduction

The previous sections describe the process of optimal model generation and
mapping these song models in a SOM. In this SOM, those songs that are sim-
ilar with respect to the extracted feature are mapped close together. This
section describes the architecture that enables fast and efficient playlist gener-
ation, while satisfying the requirements of finding similar music according to
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an adaptable similarity measure and being scalable to larger databases.

4.5.2 Playlist Retrieval

As was described in Section 4.2.4, the mapped song positions in each SOM are
stored in a relational database (Figure 4.7). The SOMID - SongID table has
the following structure (the shown table entries are arbitrary example values):

SOMID SongID PosX PosY

1 23 3 4
1 24 4 4

. . . . . . . . . . . .

Table 4.1: Structure of the SOMID - SongID table

The playlist generation process is based on nearest neigbor queries of a seed
song. For one single SOM, the positions of all songs in the SOM are retrieved.
Once a seed song of the playlist has been selected, the distances of all other
songs in the list to this seed song are calculated using the euclidean distance
measure on the mapped song positions. The resulting distances to the seed
song are then used to sort the list on increasing distance. This list of songs
is the basic playlist generation heuristic (heuristic a in Figure 3.1) that was
presented by Pampalk et al. [82]. Since during the playlist generation only
the mapped positions in the SOM are used, the playlist generation heuristic is
computationally inexpensive.
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4.5.3 Adaptable similarity measure

In order to be able to provide a personalized similarity measure, even for large
music collections, the personalized distance between two songs can be expressed
as a weighted sum of distances on individual features:

D(A‖B) =

N
∑

i=1

wiDi(A‖B) (4.7)

N
∑

i=1

wi = 1

where Di(A‖B) is the distance between songs A and B based on the feature
with index i, wi the feature weights and N the number of features that are
available.

Instead of computing one single SOM based on a weighted combination
of features, multiple SOMs can be trained on independent features. After
selecting a seed song, the individual song distances in the set of SOMs can be
combined using Equation 4.7. By allowing the user to individually adapt the
wi, a personalized distance can be realized at playlist generation time.

4.5.4 Segmenting similarity space

In a well-trained SOM, similar songs are mapped close to each other. This
fact can be used to further reduce the computational expense for retrieving a
nearest neighbor list, since primarily similar songs are of interest for a playlist.
Depending on the size of the SOM and the number of songs in the database,
only songs that are mapped in the rows and columns around the position of the
seed song can be retrieved from the database. This extra filtering can provide
an extra decrease of computational cost.

4.5.5 Summary

This section describes the playlist generation module that was implemented
in the course of this research. By using mapped song positions an euclidean
distance measure can be used for determining song similarities. Since this is
computationally inexpensive, nearest neighbour lists from a chosen seed song
can be generated at playlist generation time. By choosing different weights for
single feature similarities, a personal similarity measure can be created. The
computational expense for generating playlists can be further reduced by only
retrieving songs that are mapped close to the seed song.
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4.6 Summary

In this chapter, the architecture of the framework that was developed during
this research was described. The importance of the four design criteria (quality,
flexibility, portability and speed) was differentiated for the three modules of
the framework: feature extraction and modelling, song (model) management
and playlist generation. After outlining the general structure of the framework
in Section 4.2, the most important components of each module are described
in Section 4.3 - 4.5.
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Chapter 5

Evaluation

5.1 Introduction

In this chapter, the concepts that are developed to improve the quality of music
playlist generation systems are evaluated. The chapter consists of three papers
that were published in the course of the research.

In the first paper, ‘On Mixture Model Complexity Estimation for Music
Recommender Systems’ [11], the validity for using the BSAS algorithm (Sec-
tion 4.3.3) for approximating more complex model complexity estimation al-
gorithms is assessed. The paper ‘Variable-size Gaussian Mixture Models for
music similarity measures’ [9] uses the model complexity estimation algorithm
that was presented in [11] for a music genre classification task. Individually
assessing song model complexity for each song yields better genre classification
results at an average lower model complexity. In the third paper, ‘Variable-size
Gaussian Mixture Models for music similarity measures’ [10], the variable-sized
song models are mapped in a SOM using the heuristic that was described in
Section 4.4.

5.2 On Mixture Model Complexity Estimation for

Music Recommender Systems

5.2.1 Abstract

Content-based music navigation systems are in need of robust music similarity
measures. Current similarity measures model each song with the same model
parameters. We propose methods to efficiently estimate the required num-
ber of model parameters of each individual song. First results of a study on
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relationships between a small set of basic audio features are presented. We
conclude that there are only very small correlations between models on low-
and on high-dimensional features.

When we compare a very simple clustering algorithm with an algorithm
that estimates model parameters using the MDL criterium, we find a surpris-
ingly strong correlation between the estimated number of mixture components.

5.2.2 Introduction

With the ever increasing availability of digital music, new music access strate-
gies are needed. Perrot [88] found that college students where capable to
classify a piece of music quite accurately in a 10-class genre taxonomy, while
only listening to an excerpt of 250 ms. This is “fundamentally inexplicable with
present models of music perception” [105] and justifies the statement that the
audio surface contains a lot of information that can be used for music genre
classification.

Content-based music recommendation seems to be the most promising solu-
tion for finding music in large music collections. These systems usually extract
a set of high dimensional features from the audio signal and model these with
a statistical model, where a Gaussian Mixture Model with a fixed number of
gaussians (between 10 and 100) is most common.

The main problem of content based music recommendation engines is the
lack of robustness of the recommendations. Aucouturier [2] finds that certain
songs are always ranked very high in a nearest neighbor search. He suggests
that these songs (named hubs) contain outlier frames, that have great impact
on the song model. It is interesting to note that the ‘hubness’ of a song is found
to be not an intrinsic property of the song, but rather a property of a given
algorithm. For this reason, we present an alternative approach for modelling
music.

Each song has its own characteristics: Instrumentation, vocals, rhythm,
etc. These characteristics influence the spectrum and structure of the song and
thus the data distribution of the extracted features. We hypothesize that the
appearance of hubs can be reduced by analyzing a song’s feature complexity
and adapting the number of components of a song’s model accordingly. To
the best of our knowledge, this has not yet been applied in the field of Music
Information Retrieval.

In section 5.2.3, we will give a short overview of Music Information Retrieval
(MIR) and some commonly used music descriptor features. Section 5.2.4 is on
modelling these features and section 5.2.5 deals with complexity estimation
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of music data. We present two methods to estimate the model complexity of
high-dimensional features. In section 5.2.6 we present some results of both
methods.

5.2.3 Musical features

Music Information Retrieval is the science of extracting information from mu-
sic for various purposes. In large music collections we want to minimize the
number of required actions of a user to find the music he likes. Some ten years
ago, Wold [124] identifies four methods how to access sounds:

• Simile: Find sounds that belong to a certain class.

• Acoustical/perceptual features: Find sounds that fulfill certain feature
criteria.

• Subjective features: Find sounds using a personalized description scheme.

• Onomatopoeia: Query by humming.

These methods are still major areas of research in MIR.

Current music retrieval systems mostly rely on timbre-based features. Tim-
bre is the collection of properties that distinguish the sound of a musical
note, when this note is generated from different sources or instruments. Three
timbre-based features are the Zero Crossings Rate, Spectral Centroid and Mel-
scale Frequency Cepstrum Coefficients. These features are calculated over time-
frames in which the audio signal is quasi-stationary. A common framelength
is 20ms [6].

Zero Crossings Rate

The zero crossings rate is a time-domain based feature. It is a measure of the
noisiness of an audio signal. The ZCR is defined as:

ZCR =
1

T

N
∑

n=1

|sign(x[n]) − sign(x[n − 1])| (5.1)

where T is the time in seconds, x[n] the time domain signal of the audio signal
and N = T ∗ Samplerate. Figure 5.1 depicts two 5 second intervals of songs
of two different genres. It is clear to see that the Beatles (Figure 5.1(a)) have
a ‘cleaner’ sound than Greenday (Figure 5.1(b)).
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(b) Greenday

Figure 5.1: Five second interval of Zero Crossings Rate for two songs

Spectral Centroid

The spectral centroid is defined as the center of gravity of the magnitude
spectrum of the short-time Fourier transform. It is a measure of the brightness
of the musical piece and is defined as:

SC =

∑

k kS(k)
∑

k S(k)
(5.2)

where S(k) is the power of the spectrum in the kth frequency bin.

Mel-scale Frequency Cepstrum Coefficients

MFCC have first been used in speech recognition research and have proven to
give a compact representation of the perceptually relevant frequency compo-
nents in an audio signal. The MFCC is calculated as follows:

1. Convert the signal to frames

2. Take the discrete Fourier transform

3. Take the log of the amplitude spectrum

4. Apply the Mel-scaling and smoothing

5. Take the discrete cosine transform

The mel-scale is a nonlinear scale modelling perceived pitch. It can be approx-
imated by:

mel(f) = 2595 · log10

(

1 +
f

700

)

(5.3)

Aucouturier [6] systematically explored MFCC feature space and found the
optimal number of components to use is 20.
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5.2.4 Mixture Models

The timbre features mentioned above are calculated over 20ms windows, with
a hopsize of 10ms. For a three-minute song we thus have 18000 samples. For
practical applications, this amount of data is too high. We therefore model
the data with a mixture model.

A mixture model for a d-dimensional random variable x is given by:

p(x,Θ) =
k
∑

m=1

αmpm(x,Θm) (5.4)

where k is the number of components in the mixture and Θ =

{α1, . . . , αk,Θ1, . . . ,Θk} are the model parameters. The mixture weights αm

are nonnegative and add up to one.

Gaussian Mixture Model

The most widespread mixture model type is the Gaussian Mixture Model. Each
mixture component is a gaussian probability distribution. The parameters Θ

of a gaussian are its mean µ and its covariance matrix Σ:

G(x,µ,ΣX ) =
1

(2π)N/2|ΣX |1/2

· exp

(

−1

2
(x − µ)TΣ

−1
X

(x − µ)

)

(5.5)

The covariance matrix has to be positive definite.

Parameter Estimation

When the number of components in a mixture is known, the Expectation
Maximization (EM) algorithm [25] provides an efficient method to estimate
the parameters of the distribution of n datasamples X = {x1, . . . ,xn}. The
EM algorithm is an iterative procedure and is guaranteed to converge to a local
maximum of the maximum (log-)likelihood estimate of the mixture parameters:

Θ̂ML = arg max
Θ

(log p(X|Θ)) (5.6)

Each iteration consists of two steps:

• E-step: Assign each sample to the mixture component that is most
likely to have generated the sample, based on the current estimate of the
model parameters.
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• M-step: Recompute the model parameters based on the current sample
membership estimation.

These steps are repeated until convergence of the likelihood estimate.

5.2.5 Complexity Estimation

One major problem of the EM algorithm is that the number of mixture com-
ponents in a mixture should be known in advance. When listening to various
kinds of music, it is clear that there are broad variations in musical structure
and sound. Even if this is recognized for music genre classification, where
different feature sets are used for determining class likelihood (eg. [68]), no
song-level feature model optimization is performed. We think that by mod-
elling each song with an optimal number of components significantly improves
classification accuracy. For ‘complex’ songs, the number of components will be
higher as for ‘simple’ songs.

We perform a study on feature complexity correlations between high and
low dimensional features in order to be able to predict the optimal number of
gaussians for a high dimensional feature by analyzing the complexness of a low
dimensional feature. For this, we compare our predicted number of mixture
components k̂ with a conventional ground truth kopt. We use the algorithm
presented by Figueiredo [28] to find kopt for a small set of features.

Optimal Model Selection

Model selection algorithms try to find the number of components k, that min-
imize the cost function C(Θ̂(k), k):

k̂ = arg min
k

{C(Θ̂(k), k)}, k = kmin, . . . , kmax (5.7)

The cost function C(Θ̂(k), k) consists of two parts:

• A part expressing the goodness of fit of a model with k components. This
function is a monotonically increasing function of k.

• A part penalizing models with higher k.

The method presented by Figueiredo uses a cost function that is based on the
Minimum Description Length (MDL) criterion. This criterion is based on the
idea that if you can describe some observed data with a short code, you have
a good model of the source generating the data.
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Figure 5.2: Distribution of kopt on a dataset of 234 songs

In Figure 5.3 we see the optimal number of mixture component as found
by Figueiredo’s algorithm on a dataset of 234 songs. We see that kopt varies
between 3 and 30 around a center value of 15 components. Note that this value
for kopt is significantly less than the fixed value of k = 50 found by Aucouturier
[6].

There are numerous algorithms that are also based on the MML criterion.
Zivkovic [130] presents an algorithm that uses a coarse approximation of MML.
It is much faster than Figueiredo, but also less robust.

Model Estimation

Although model selection algorithms like Figueiredo or Zivkovic presented pro-
vide reasonable speed, they are not suitable to find the optimal number of
model components for a dataset consisting of 20-dimensional features of 5000
songs because of computation time considerations. Therefore, we search for
methods to efficiently estimate the minimal required model complexity of in-
dividual songs that are computationally less expensive than the algorithms
mentioned above.

Correlation between features We assume that the required model com-
plexity is an intrinsic property of a song. Based on this assumption, we expect
a relationship between the required number of components for modelling simple
features such as the ZCR or SC and the required number for complex features
such as MFCC.

Correlation between algorithms When required model complexity is an
intrinsic property of a song, different component estimation algorithms must
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also correlate. We have investigated correlations between the number of com-
ponents k, found by very simple clustering algorithms and kopt as found by
Figueiredo. The most basic algorithm we use, is the “Basic Sequential Algo-
rithmic Scheme” (BSAS [112]). As can be seen from the following pseudocode,
BSAS only has two parameters: The threshold Θ for determining whether a
new cluster has to be formed, and NmaxClust, the maximum number of clusters
to be formed.

1: Nclust = 1

2: C1 = {x1}
3: for i = 2 to N do

4: find Ck: d(xi, Ck) = min∀j d(xi, Cj)

5: if (d(xi, Ck) > Θ) and (Nclust < NmaxClust) then

6: Nclust = Nclust + 1

7: CNclust
= {xi}

8: else

9: Ck = Ck ∪ {xi}
10: end if

11: end for

5.2.6 Results

We have selected 234 songs from 26 different genres and analyzed kopt, the
optimal number of components found by Figueiredo‘s algorithm. Then, we
compare kopt with estimations of the number of components, obtained via the
two methods that have been described in section 5.2.5: Correlation between
features and correlation between algorithms.

Correlation between features

In Figure 5.3(a) we have plotted the relation between the number of mixture
components as found by Figueiredo’s algorithm on the ZCR and SC, kZCR and
kSC. We find the Pearson’s correlation coefficient to be 0.39.

In Figure 5.3(b) we see the relation between kZCR and kMFCC, the opti-
mal number of mixture components of the complete 20-dimensional MFCC, as
found by Figueiredo. The Pearson’s correlation coefficient is only 0.27.

The correlation coefficients we found are too low to meaningfully predict
the number of mixture components of the complete 20-dimensional MFCC
vector.
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Figure 5.3: Correlation of kopt between features
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Figure 5.4: kopt on MFCC data, found by Figueiredo vs BSAS

Correlation between algorithms

We used BSAS on our dataset with an Euclidean distance measure, Θ = 4 and
NmaxClust = 400. BSAS tends to find a huge amount of very small clusters
on outlier frames. When we discard clusters of less than 80 samples (out of
9000), we get the following relationship between kopt as found by Figueiredo
and BSAS: The Pearson’s correlation coefficient is 0.78, which is significantly
higher than for the feature-based correlation approach. We can approximate
the relationship between the number of components found by BSAS and found
by Figueiredo as:

kFigueiredo
∼= (kBSAS − 8) · 1.5 (5.8)

This expression overestimates the number of components for most cases. This
is deliberate since the loss of information when modelling with less mixture
components than required, gives a bigger loss of information than models with
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a too high number of components.

5.2.7 Conclusion

We presented two methods to estimate the required model complexity of in-
dividual songs. We found only very weak correlations between different audio
features. Especially between low- and high-dimensional features, correlation
is neglectable. Probably, the single dimension as used by the ZCR or SC con-
tains far too little information to accurately predict the number of clusters in
a higher dimensional feature space.

Further research on correlations between two- or three-dimensional fea-
tures and high-dimensional features is needed to explore the possibilities of
complexity estimation using simpler features.

The use of simple clustering algorithms, such as BSAS shows much better
results. We can approximate the relationship between the number of mixture
components as found by BSAS and the conventional ground truth as found by
the algorithm of Figueiredo with a linear expression.

5.3 Variable-size Gaussian Mixture Models for music

similarity measures

5.3.1 Abstract

An algorithm to efficiently determine an appropriate number of components
for a Gaussian mixture model is presented. For determining the optimal model
complexity we do not use a classical iterative procedure, but use the strong
correlation between a simple clustering method (BSAS [112]) and an MDL-
based method [28]. This approach is computationally efficient and prevents
the model from representing statistically irrelevant data.

The performance of these variable size mixture models is evaluated with
respect to hub occurrences, genre classification and computational complexity.
Our variable size modelling approach marginally reduces the number of hubs,
yields 3-4% better genre classification precision and is approximately 40% less
computationally expensive.

5.3.2 Introduction

In the current boom of web 2.0, the market for music recommender systems
seems to have taken off. Last.fm, iLike, myStrands and others analyze a user’s
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listening behaviour and compare it with other user’s profiles. Music can be
tagged with personal tags which allows new ways to explore music collections.

One of the major problems of these community based recommender systems
is their robustness in new databases and dealing with underrepresented data.
Once a song is chosen as favourite, a loop mechanism can keep this song as
favourite for a long time. Community based recommenders can be sensitive
to attacks that try to influence a specific song’s rating. Two kinds of attack
strategies are shilling (promoting an item) and nuking (demoting an item) [66].

Another approach for recommender systems that do not suffer from loops,
shilling or nuking is content-based recommendation. The acoustical content
of a song is analyzed, and songs found to be ‘similar’ to songs a user likes
are recommended. Audio similarity is multifaceted, so a common approach
to evaluate audio similarity measures is to perform a genre classification task.
Pampalk et al. [80] found that a combination of 70% timbral and 30% temporal
features provide a good audio similarity measure.

Hubs, songs that are found to be very similar to a very large number of
other songs, are a major problem for audio-based music recommender systems.
Aucouturier and Pachet [7] showed that in a purely timbre-based nearest neigh-
bor retrieval system, the number of hubs significantly increases when discarding
the 5% least significant clusters from a Gaussian mixture model.

The computational complexity for calculating the distance between Gaus-
sian mixture models scales linearly with the number of clusters in a mixture
model for most distance measures. Reducing the number of clusters in a
model thus has great impact in computational complexity, but influences per-
formance.

We present a method to reduce the number of mixture components with-
out sacrificing retrieval performance. The required number of Gaussians in a
Gaussian mixture model is estimated for each song individually. The number
of clusters is then used by the Estimation Maximization algorithm to model
the song data. Using individual song complexity estimation prevents over-
fitted models on ‘simple’ songs with too complex models, while still offering
‘complex’ songs an adequate model complexity.

The remainder of this paper is organized as follows: In section 5.3.3 we
present a short overview of related work. Section 5.3.4 describes our feature
modelling approach in detail. This section is followed by a performance anal-
ysis with respect to the effect of our algorithm on hubs and on a genre clas-
sification task. In our last section we summarize our results and give some
recommendations for further research.
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5.3.3 Related Work

Berenzweig et al. [14] compare anchor space based and GMM based similarity
measures with a similarity matrix retrieved from a user survey. The anchor
space method performs very similarly to the GMM method.

Aucouturier and Pachet [6] systematically explore feature parameter space
for timbre similarity experiments and evaluate performance with a nearest
neighbour retrieval task. Optimal R-precision was found with 20 dimensional
MFCCs and a Gaussian mixture model with 50 components. The number
of model components however is of less influence than the number of feature
dimensions. Their conclusion is that ‘Everything performs the same’ and that
there seems to be a glass ceiling in R-precision.

Flexer et al. [30] compare Hidden Markov Models (HMMs) with Gaussian
Mixture Models (GMM) describing spectral similarity of songs. It is shown
that HMMs are capable of representing the underlying data better than GMMs,
even if the GMM has more degrees of freedom. In a genre classification task,
both methods show very similar results.

5.3.4 Feature Modelling

We calculate song similarity on 15 dimensional MFCC vectors (without the
0th coefficient), modelled with a Gaussian Mixture Model:

p (x,Θ) =

k
∑

i=1

αiG(x,µ,ΣX ) (5.9)

with x a single feature vector and Θ the model parameters: cluster mean µ

and cluster covariance Σ. The mixture weights αi are nonnegative and add up
to one.

Parameter Estimation

When the number of components in a mixture is known in advance, the Expec-
tation Maximization (EM) algorithm [25] provides an efficient method to esti-
mate the parameters of the distribution of n data samples X = {x1, . . . ,xn}.
The EM algorithm is an iterative procedure and is guaranteed to converge
to a local maximum of the maximum (log-)likelihood estimate of the mixture
parameters:

Θ̂ML = arg max
Θ

(log p (X|Θ)) (5.10)

Each iteration consists of two steps:
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• E-step: Assign each sample to the mixture component that is most
likely to have generated the sample, based on the current estimate of the
model parameters.

• M-step: Recompute the model parameters based on the current sample
membership estimation.

These steps are repeated until the likelihood estimate converges.

Complexity Estimation

During the training phase of the EM algorithm, the number of mixture com-
ponents remains constant, even if the model over- or underfits the data. When
listening to various kinds of music, it is clear that there are broad variations
in musical structure and sound. Mörchen et al. [68] recognized this issue on a
genre level and used different feature sets for each genre for determining genre
likelihood.

Pampalk [78] allows variable-size models for each individual song. A k-
means model is fitted to the song features and a minimal distance between
clusters is defined. When two cluster centers are within this minimal distance,
they are merged.

We introduce a similar approach to Pampalk, and use it to generate gaus-
sian mixture models.

Optimal Models Model selection algorithms try to find the number of com-
ponents k, that minimize the cost function C(Θ̂(k), k):

k̂ = arg min
k

{C(Θ̂(k), k)}, k = kmin, . . . , kmax (5.11)

The cost function C(Θ̂(k), k) consists of two parts:

• A part expressing the goodness of fit of a model with k components. This
function is a monotonically increasing function of k.

• A part penalizing models with higher k.

Figueiredo and Jain [28] presented an algorithm that optimizes a cost func-
tion based on the Minimum Description Length (MDL) criterion. This criterion
is based on the assumption that if one can describe some observed data with
a short code, one has a good model of the source generating the data. Other
algorithms optimizing a cost function like in Equation 5.11 exist (eg. [85],
based on the Bayesian Information Criterion), but have not been investigated.
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Figueiredo uses a modified version of the EM algorithm for fitting a GMM
in the dataset. The algorithm starts with a high number of components and
eliminates components of the mixture in the M-step.

for i = 1, . . . , k :

α̂i(t + 1) =
max

{

0,
(

∑n
j=1 w

(j)
i

)

− N
2

}

∑k
i=1 max

{

0,
(

∑n
j=1 w

(j)
i

)

− N
2

} (5.12)

where w
(j)
i is the conditional expectation that sample j belongs to mixture

component i. When the EM algorithm is converged and the number of com-
ponents is still larger than kmin, the component with the smallest support is
forced to zero. This procedure is repeated until k = kmin.

Optimal Model Approximation As a consequence of using EM to iter-
ate through the various model sizes, Figueiredo’s algorithm is very slow. We
found that the number of clusters found by the much simpler ‘Basic Sequential
Algorithmic Scheme’ (BSAS, [112]) shows high correlation with the number of
clusters as found by Figueiredo. This algorithm only takes two parameters:
the threshold θ for determining whether a new cluster has to be formed, and
NmaxClust, the maximum number of clusters to be formed.

The basic algorithm in pseudocode consists of the following
steps:

1: Nclust = 1

2: C1 = {x1}
3: for j = 2 to n do

4: find Ci: d(xj , Ci) = min∀k d(xj , Ck)

5: if (d(xj , Ck) > θ) and (Nclust < NmaxClust) then

6: Nclust = Nclust + 1

7: CNclust
= {xj}

8: else

9: Ck = Ck ∪ {xj}
10: end if

11: end for

This algorithm was modified to accept new clusters even if the maximum num-
ber of clusters has already been reached, but only if there is a cluster that was
assigned less than 1% of the data. This smallest cluster is then discarded
and replaced by the new cluster. After the algorithm has finished, all clusters
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containing less than 1% of the data are discarded. The cluster centers found
by BSAS are used as input for an EM algorithm to fit a GMM in the data.
The EM algorithm uses all samples, including those in the clusters that were
discarded in the BSAS algorithm.

Initializing the EM process with the clustering result of BSAS significantly
decreases the number of iterations the EM algorithm needs to converge when
we compare it with methods that discard insignificant clusters in the training
phase of the algorithm.

We compared the number of components found by Figueiredo with that
of BSAS, on a subset of 234 songs from the Magnatune dataset. This subset
covers all music genres available in the Magnatune data. The Pearson’s corre-
lation coefficient between the number of clusters found by both algorithms is
0.78.

5.3.5 Evaluation

We selected a subset of 331 songs from the Magnatune dataset, covering six
genres. This dataset is modelled both with fixed size GMMs with 20 clusters
and with variable size GMMs with a maximum 30 clusters. The number of
clusters in the variable size model case is determined by the BSAS algorithm
as presented in section 5.3.4. The mean number of clusters over our dataset
was 15. The EM modelling complexity scales approximately linearly with the
number of clusters, we therefore obtained a 25% computing time gain for the
variable size models. We use the Earth Mover’s Distance to determine the
distance between the GMMs [14]. Computation of the full song similarity
matrix was approximately 40% faster for the variable size models.

Hub-analysis

Robustness of music similarity measures can be evaluated by means of a hub-
analysis. Aucouturier [7] uses two methods to assess the hubness of various
algorithms: N-occurrences and Neighbour Angle. In this subsection we evalu-
ate the hubness of our dataset, modelled with the variable and the fixed size
models, using the N -occurrence measure.

N-occurrences The N -occurrence measure counts the number of times a
song occurs within the N nearest neighbours of all songs in a data set. The
measure is a constant-sum measure: the mean N -occurrence is equal to N .
When studying hubs, we are interested in the amount of songs that occur much
more frequently in the N nearest neighbours than the expected average value.
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Figure 5.5: N -occurrence analysis

In Figure 5.5 we show the N -occurrence histograms for N = 50. The number of
songs that occur more than 150 times differs only marginally between the two
model types: 11 for the variable size models and 12 for the fixed size models.
The use of variable size models thus seems to have small positive impact on
hub occurrences.

Aucouturier [7] showed that discarding statistically irrelevant clusters (ho-
mogenization) caused a dramatic increase in the number of hubs. With this
experiment we showed that reducing the number of mixture components can
be done without having negative influence on the number of hubs. Apparently,
not all songs require the same number of mixture components.

Genre classification

The most common evaluation procedure for music similarity measures is genre
classification. Since we are only interested in the comparison between fixed-
and variable size models, we do not apply an artist-filter as has been suggested
by Pampalk et al. in [80].

Aucouturier and Pachet [4] dispute the use of genre classification for eval-
uating timbre similarity. Different artists within one single genre may have a
very broad ‘timbral’ spectrum. Our data set only contains very few artists per
genre. As a consequence of this, and under the assumption that each single
artist only uses a narrow timbral spectrum, we can generalize genre distance
to timbral distance.

Classification results We use a simple k-nearest neighbour classifier and
classify with a leave one out cross validation procedure. In Figure 5.6(a) we
depict the classification accuracy for a range of k, for variable-size models with
15 Gaussians on average and for fixed-size models with 20 Gaussians. We see
that the variable-size models consequently outperform the fixed-size models,
even with an average lower model complexity.
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Figure 5.6: Genre classification performance

Inter- and intra genre distance Aucouturier and Pachet [4] use the mean
distance between songs within a single genre and between different genres to
express the limited use of genre classification for timbral similarity evaluations.
Artists within a certain genre without a ‘coherent’ sound make it difficult to
find a direct relationship between timbre similarity and genre similarity.

Our database consists of few artists per genre and all have a ‘coherent’
sound. We can thus use the measure to compare timbre discrimination perfor-
mance of the fixed size Gaussian models with the variable size models to each
other. Both for the 20 Gaussians and the variable size models we find a ratio
of 1 : 1.32. Although the variable size models have a lower mean number of
components, the timbre information seems to be captured just as well as by
the more complex fixed size models.

5.3.6 Conclusions

In this paper we presented an algorithm to estimate an optimal number of
cluster components for each individual song. We compared the number of
hub occurrences between a 20-Gaussian model and our variable size modelling
approach with 15 clusters on average. Our variable size modelling approach
marginally reduces the number of hubs.

111



Evaluation

We analyzed the timbral discrimination performance of our measure with a
genre classification task on a small database with homogenous genres. Variable
size models outperformed fixed size models with respect to genre classification
by 3-4% and shows the same mean inter- to intra genre distance ratio at average
lower model complexity.

Computation of a full song distance matrix using the Earth Mover’s Dis-
tance is approximately 40% faster for the variable size models.

5.4 Music Playlist Generation by assimilating

GMMs into SOMs

5.4.1 Abstract

A method for music playlist generation, using assimilated Gaussian mixture
models (GMMs) in self organizing maps (SOMs) is presented. Traditionally,
the neurons in a SOM are represented by vectors, but in this paper we pro-
pose to use GMMs instead. To this end, we introduce a method to adapt a
GMM such that its distance to a second GMM decreases at a controllable rate.
Self organization is demonstrated using a small music database and a music
classification task.

5.4.2 Introduction

The music industry has made a huge step towards digital distribution of their
products. It is possible to buy individual tracks of high audio quality online at
a small fee, even without copyright protection. Online platforms like Amazon
successfully apply collaborative filtering techniques: Users profiles are made up
by monitoring and analyzing buying, searching and rating behaviors. These
profiles are matched to the behavior of new visitors to find music that might
be of their interest. This very same principle is applied by various websites
dedicated to music recommendation: Last.fm, iLike, myStrands and others are
so called social music recommendation websites. But social music recommen-
dation has several major disadvantages: a large amount of collective data has
to be collected and non-mainstream listeners have problems with underrep-
resented data causing bad recommendations. This paper is on content-based
music recommendation. A heuristic that allows fast and robust content based
music exploration is presented. The following paragraphs give a brief overview
of the elementary components of current content-based playlist generation sys-
tems: the process of getting music recommendations, modelling the content of
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songs, and current methods for content-based music playlist generation. The
section ends with an outlook on the contents of the paper.

Content based music recommendation and exploration systems are based
on methods expressing similarity between every pair of songs in a collection
of songs. This similarity is calculated by modeling the statistical distribution
of a set of extracted features of each individual song (called song model) and
determining the similarity between these distributions of all song pairs. Music
recommendations can be done by asking a user for one or multiple seed songs
that one likes, and presenting songs with small distance to these songs. The
quality of content based music recommendations and music exploration appli-
cations is highly dependent on the method used for determining the similarity
between songs. Selecting the features to describe each song is a tedious pro-
cess and falls out of the scope of this paper. The similarity measure used in
this paper is based on the timbral ‘Mel-scale Frequency Cepstral Coefficients’
(MFCC) feature [52], wich is known to be a suitable feature for music genre
classification systems [6].

There are several methods available for modeling the statistical distribution
of the extracted features of each song. Both Gaussian mixture models (GMMs)
and hidden Markov models (HMMs) have been used [6]. These models both
use a probability density function that is made up of a weighted sum of Gaus-
sian distributions. A GMM uses a single set of Gaussians for modeling the
content of an entire song, a HMM has multiple smaller sets that each describe
a smaller part of a song and between which temporal relationships can exist.
Aucouturier and Pachet [6] explore the parameter space for music similarity
measures. The number of Gaussians in GMMs are systematically varied for
song models of high dimensional MFCC features and GMMs were compared
with HMMs. The quality of the song models is evaluated using a precision
measure. This measure determines the amount of retrieved songs belonging
to the same (predefined) cluster as that of a seed song in a nearest neighbor
search. The best performing parameter set for a music similarity task used
20-dimensional MFCC vectors, modelled using GMMs having 50 Gaussians
per GMM. HMMs showed no better performance than the conceptually easier
GMMs with a similar number of degrees of freedom.

Current content based playlist generation algorithms [e.g. 81] pre-calculate
a full distance matrix, expressing all pair distances between the song models
of all songs in a music database. This distance matrix is used as input to a set
of playlist generation heuristics, defining rules for how to select songs that are
close to a given seed song. Others [e.g. 95] use Self Organizing Maps (SOMs)
for music exploration. A SOM is a neural network projecting an N -dimensional
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Euclidean vector space to a low dimensional (usually 2) grid while keeping the
topology between the vectors approximately intact. Self organizing map based
mappings of songs provide an intuitive method for exploring music databases
[95]. The use of appealing visualizations [76] reduces the barrier of exploring
new regions in unknown music databases.

Both the distance matrix and the SOM based approaches have limitations.
Although the distance matrix based approach allows similarity measures based
on dedicated song models, the computational complexity is very large: when
one single song gets added to the database, the distances to all other songs
in the database have to be computed and added to the distance matrix. Also
the power of SOMs for music organization is limited. Each neuron in a SOM
can only contain a single vector, which limits the song representation accuracy.
Several strategies have been presented for selecting a maximally informative
vector that captures the properties of a song. Rauber and Frühwirth [95]
presents a two-stage SOM mapping: the first stage SOM is trained on the
raw feature vectors of the entire database. The SOM activation patterns for
each song in this first SOM are stored in a vector and are then used to train
the second SOM. Pampalk [76] evaluated different strategies, using indexes of
characteristic feature models and simple mean feature values over entire songs
as vectors.

This paper focusses at reducing the computational complexity of playlist
generation systems while keeping the method for determining song similarity
robust. This is achieved by combining the modeling power of song GMM
models with the self organization properties of SOMs. GMMs allow capturing
the statistical properties of songs in great detail, but performing similarity
calculations on GMMs is computationally expensive. SOMs allow intuitive user
interfaces [76] and simple similarity calculations in the low-dimensional space
of the SOM. We pose that combining the modelling accuracy of GMMs with
the simple similarity calculations in SOMs provides fast and robust playlist
generation systems. SOMs have almost exclusively been used to map an N -
dimensional Euclidean vector space to a 2D grid. Since modeling a song with
a single Euclidean vector severely limits the accuracy and level of detail of the
song representation, we introduce a heuristic that allows assimilating GMMs
in SOMs. This heuristic works with GMMs with a fixed number of Gaussians
as well as with variably-sized GMMs [9].

The remainder of this paper is organized as follows: In Section 5.4.3 the
basics of Gaussian mixture modeling are introduced. Section 5.4.4 introduces
the principles of self organization in self organizing maps. This section is
followed by an introduction to adaptive Gaussian mixture models and the
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presentation of the heuristic that enables the assimilation of GMMs in a SOM.
The heuristic is evaluated with a music genre classification task using a self
organizing map in Section 5.4.6. In section 5.4.7, it is argumented that self
organizing maps are well suited for personalized playlist generation. The paper
concludes with Section 5.4.8, the conclusions.

5.4.3 Gaussian Mixture Models

Gaussian mixture models (GMMs) are being used in a wide range of data
modeling and classification tasks. A GMM describes the distribution of an
object S in feature space X as the weighted sum of k Gaussian probability
density functions. The probability of a sample x given a GMM Θ can then be
expressed as:

p(x|Θ) =

k
∑

i=1

αiG(x,µi,Σi) (5.13)

with G a single Gaussian distribution where µi is the mean vector and Σi is
the (positive definite) covariance matrix of the ith Gaussian in the mixture
model. The individual mixture weights αi sum up to one. In our case, S is a
particular song. X is the space of MFCC features, and xj is the jth MFCC
vector extracted from that particular song.

A GMM can be trained on a dataset using the Expectation-Maximization
(EM) algorithm [25]. The EM algorithm is an iterative procedure and is guar-
anteed to converge to a (possible local) maximum of the log-likelihood function

log p (x1...n|Θ)

of the mixture parameters.
Each iteration consists of two steps:

• E-step: Based on the current estimate of the model parameters, assign
each sample to the mixture component that most likely generated the
sample.

• M-step: Recompute the model parameters based on the current sample
membership estimation.

These steps are repeated until convergence of the likelihood estimate or until
a maximum number of iterations has been performed.

When GMMs are being used for a classification task, a learning set of
feature vectors of each single class are used to train a GMM. During the classi-
fication stage, the log-likelihood of each model Θ is determined for a sequence
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of feature vectors from the object S:

log p(x1...n|Θ) =

n
∑

j=1

log p(xj |Θ) (5.14)

The log-likelihood of the feature vectors is determined for all classes. The class
with the highest log-likelihood is chosen as winner.

It was shown in [9] that the average number of Gaussians per song can
be reduced without losing performance in a simple music genre classification
task. This was realised by estimating an optimal number of Gaussians for each
single song.

5.4.4 Self Organizing Maps

Introduction to Self Organizing Maps

A self organizing map (SOM) is a neural network that accomplishes a mapping
of a high dimensional space to a lower dimensional space. The term ‘self
organizing’ refers to the property that the neural net can be trained by a
training set such that the mapping approximately preserves the topology of
the training set: neighbors in the training set are mapped to neighbors in
the lower dimensional space. For training it uses the principles of competitive
learning. Given a variable x(t) ∈ Rn and a set of reference or codebook vectors
mi(t) ∈ Rn, i = 1 . . . k. Here, k is the number of neurons. The variable t is a
counter that indexes the iteration count during the learning phase of the SOM.
We refer to t as ‘time’. x(t) is drawn from a learning set. mi(0) is initialized
with random vectors from the learning set. Each codebook vector is stored in
a neuron that has an activation function monotonically decreasing with the
distance of its codebook vector to the input sample x(t).

At time t, the sample x(t) is presented to all neurons, the winning neuron
is that one having the highest activation, i.e. the neuron with the codebook
vector most similar to input x(t):

mc(t) ∈ m1...k : mc(t) = min
∀i

‖x(t) − mi(t)‖ (5.15)

The winning codebook vector mc(t) is then adapted to decrease the distance
to x(t):

mc(t + 1) = mc(t) + α(t) [x(t) − mc(t)] (5.16)

with α(t) a monotonic decreasing function, determining the learning rate of
the system. For sufficiently large t, the codebook vectors mi will describe
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x(t) with a minimal residual error. This result is similar to that of a vector
quantization algorithm.

The described ‘network’ does not have any notion of topology, no neigh-
borhood relationships between the neurons were defined. Kohonen [44] aligned
the neurons on a grid and introduced a neighborhood function φ giving the
neurons topological relationships. The update function now not only updates
the winning neuron mc, but also its neighbors Nc:

mi(t + 1) = mi(t) + α(t)φ(t) [x(t) − mi(t)]

∀i ∈ Nc(t) (5.17)

mi(t + 1) = mi(t) ∀i /∈ Nc(t) (5.18)

The neighborhood function is a monotonic decreasing function over dis-
tance to the winning neuron. Its radius decreases over time. Due to the
sequential overlaps of the neighborhood functions at each iteration of the al-
gorithm, the values of the codebook vectors tend to be smoothed and become
ordered. Similar input samples x will map to neurons that are topographically
close to each other.

5.4.5 GMMs in SOMs

Self organizing maps can work with any kind of codebook type, as long as
two conditions are fulfilled. A distance measure with monotonic decreasing
distance function between training data and codebook entry is available and
there is an algorithm for adapting the codebook entry to better represent the
training data.

In order to be able to use GMMs in SOMs, an algorithm capable of adapting
a GMM in a SOM neuron to better represent the training GMM has to be
available. In this section, current methods for adapting GMMs are reviewed
and a new heuristic for this goal is presented.

On-line adaption of GMMs

Heuristics for adapting GMMs are already used in video surveillance applica-
tions. In these applications, scene background and foreground separation is
one of the key functional blocks. Since, for instance, lighting conditions may
vary over time, subsequent images of a scene background show slight varia-
tions. Stauffer and Grimson [109] presented an on-line algorithm for modeling
the background of a scene using GMMs. The distribution of observed values
is modeled using a GMM for each single pixel. Every newly observed pixel
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value is checked against the GMM of that pixel: the pixel is compared with
all Gaussians in the mixture. If the pixel lies within 2.5 standard deviations
of the most likely Gaussian, the pixel is assigned to that cluster. The cluster
parameters are then updated using a simple update rule. When the pixel does
not match any clusters in the GMM, the cluster with the smallest weight is
discarded and a new cluster is formed with the observed pixel value as new
mean. A very similar algorithm was presented by Hu and Su [40].

Song and Wang [107] presented an alternative approach. A series of newly
observed values of a pixel x are modeled with a separate GMM a(x). All
clusters in a(x) are compared with the clusters in the existing GMM gN (x)

of that pixel. Statistical cluster equivalence between the clusters in a(x) and
gN (x) is assessed using the W statistic and Hotelling’s T 2 test. The statistical
equivalent clusters in a(x) and gN (x) are then merged in a new gN (x), and the
non-equivalent clusters are added to the new gN (x). The algorithm can create
new clusters until a maximum number of clusters has been reached.

New approach for adaptive GMMs

The on-line adaption algorithms for GMMs that were presented in the pre-
ceding subsection, allow an existing GMM to be updated to also represent
newly observed data. With this, the second requirement for codebook entries
in SOMs seems to be fulfilled, but this is not the case. For using GMMs in a
SOMs, an algorithm is needed that allows to gradually adapt a codebook GMM
to reduce the distance between this codebook GMM and a training GMM, as
given by Equation 5.16. The method of Song and Wang [107] only allows for
complete data representation, no learning rate α can be set. The methods by
Stauffer and Grimson [109] and Hu and Su [40] allow a learning rate to be
set by varying the number of samples presented to the algorithm, but require
random samples of the observed dataset. The quality of the adaption depends
on how well these random samples represent the dataset. In this section a
heuristic is proposed that allows to gradually adapt a GMM to another GMM,
where a learning rate α allows to control the rate of adaptation.

The heuristic that is proposed in this paper is based on the Earth Mover’s
Distance (EMD) as presented by Rubner et al. [102]. The EMD is a distance
measure based on the minimal cost (amount of work), needed to transform one
‘signature’ into another. Signatures can be histograms (used by Rubner et al.)
or any other data model where a distance measure between the individual
components is defined. The principle of the EMD on histograms is illustrated
in Figure 5.7. The cost of transforming the top histogram (the supplier) to
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the bottom histogram (the customer) can be expressed as the amount (flow) of
‘earth’ to be moved between supplier and customer times the distance of the
transport. Let P and Q be the two histograms (or signatures) from Figure 5.7
with m the number of bins in P and n the number of bins in Q. The ‘weight’
of bin pi is wpi

and the sum of weights over all bins for each histogram equals
one. The distance between pi and qj is dpiqj

, the flow is fpiqj
. The distance

between P and Q can then be found by solving a minimization problem:

1. Minimize the cost function W as a function of the ‘flow’ f :

W =
m
∑

i=1

n
∑

j=1

dpiqj
fpiqj

(5.19)

under the constraints:

fpiqj
≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n

n
∑

j=1

fpiqj
≤ wpi

1 ≤ i ≤ m

m
∑

i=1

fpiqj
≤ wqj

1 ≤ j ≤ n

m
∑

i=1

n
∑

j=1

fpiqj
= min(

m
∑

i=1

wpi
,

n
∑

j=1

wqj
)

2. Determine the distance between P and Q by normalizing W to the sum
of all flows as:

DEMD(P,Q) =

∑m
i=1

∑n
j=1 dpiqj

fpiqj
∑m

i=1

∑n
j=1 fpiqj

(5.20)

Solving the transportation problem of Equation 5.19 is a linear programming
problem, for which efficient solutions exist [e.g. 24].

When using the EMD for determining the distance between two GMMs,
a distance function between two Gaussians is needed. In this paper, a sym-
metrized version of the Kullback-Leibler (KL) divergence is used. A closed
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Figure 5.7: Minimal cost transformation between two histograms

P
Q

1 2

3 4

Figure 5.8: Four steps for adapting GMMs using earth mover’s flow. P an Q
are two GMMs in a two-dimensional space. The arrows in the third step show
the flow between P and Q.

form expression for the KL divergence exists and can be expressed as:

DKL(p‖q) =
1

2
log

|Σq|
|Σp|

+
1

2
Tr
(

Σ−1
q Σp

)

+
1

2
(µp − µq)

T Σ−1
q (µp − µq) −

d

2
(5.21)

with Tr the trace operator and |Σ| the determinant of Σ. The symmetrized
version of the KL divergence is given by:

DKLsymm(p‖q) =
1

2
Tr
(

Σ−1
q Σp + Σ−1

p Σq

)

+
1

2
(µp − µq)

T
(

Σ−1
q + Σ−1

p

)

(µp − µq) − d (5.22)

with d the dimension of the data.

The proposed heuristic consists of four major steps, illustrated in Figure
5.8. The histogram bins of Figure 5.7 are now replaced by Gaussians in a
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two dimensional space. P and Q represent two GMMs. P is going to be
adapted towards Q. In the first step, the distances between all Gaussians in
the mixture models are determined using Equation 5.22 and stored in matrix
D. The weight of each Gaussian in P are adapted towards the weights of the
nearest Gaussian in Q in the second step. After normalizing the GMM P , the
third step is using the EMD to find the flow matrix F between P and Q. The
flow matrix is used to calculate the cost matrix: C with Cij = fijdij. Each entry
in C thus represents the contribution to the amount of work (Equation 5.19)
that the EMD tries to minimize. For each Gaussian in Q, the most ‘expensive’
supplier Gaussian in P is identified. In the fourth step, Q’s Gaussians are
shifted towards their most expensive supplier Gaussian in P , to obtain the
highest possible cost reduction.

When formalizing the process, the heuristic can be described as follows.
Let P be the codebook GMM and Q be a training GMM. The process consists
of the following steps:

1: Calculate distance matrix D using Eq. 5.22
2: for i = 1 to m do

3: find qk ∈ Q: qk = min∀j D(i, j)

4: wpi
= wpi

+ α(wqk
− wpi

)

5: end for

6: for i = 1 to m do

7: wpi
= wpi

/
∑

i wpi

8: end for

9: Find the cost matrix C using EMD
10: for i = 1 to m do

11: find qk ∈ Q: qk = max∀j Cij

12: µpi
= µpi

+ α(µqk
− µpi

)

13: Σpi
= Σpi

+ α(Σqk
− Σpi

)

14: end for

with α ∈ [0 . . . 1] an adaption strength factor.

The Gaussian weight adaption is explicitly placed before calculating the
EMD flow, and not at the later mean and covariance adaption stage. The
reason behind this design choice is, that clusters that are close to each other,
with the same weight, are likely to have only one single flow path. When later
moving the clusters towards the most expensive supplier, a distance improve-
ment is guaranteed. Clusters having more than one supplier can be moved
towards the most expensive supplier cluster, at the risk of increasing the cost
of a secondary supplier cluster.

121



Evaluation

5.4.6 Evaluation

Evaluating automatic playlist generation systems is a hard task. First, musical
preference is very personal and largely based subjective criteria. Second, the
goodness criteria of a playlist is also personal and context dependent. In this
paper, the quality of the GMM adapting heuristic is thus not directly judged
by assessing ‘playlist quality’, since there is no universal goodness criterium.

In this section, the performance of the heuristic itself and the heuristic
applied in a SOM with GMMs is evaluated using two methods for music genre
classification, and compared to previous results obtained on the same dataset
[9]. The dataset consists of 331 songs from six different musical genres. Of each
song, a 15 dimensional MFCC vector [52] is extracted every 10 milliseconds,
resulting in approximately 20000 samples per song. Each song is then modeled
with variably-sized models with on average 15 clusters and a maximum of 30
clusters per song [see also 9].

The heuristic itself is evaluated using a music genre classification task. The
song GMMs are used to train a single GMM for each genre, using the proposed
heuristic. Each song in the database is then classified using the EMD between
the song and the genre models.

Song organization within a self organizing map is also evaluated using a
genre classification task. A SOM is trained using the same music as in the
genre classification task described above. Instead of using the neuron GMMs
for genre classification, the song positions in the map are used as input for a
k-nearest neighbor classifier.

Evaluation of the Heuristic

One single genre GMM is iteratively adapted to the song GMMs of one single
genre. For this step, Equation 5.16 is used. The success of adapting the
GMM is measured by analyzing the distance reductions between the genre
GMM and the song GMMs as a function of α: The distance between the
song and the genre GMM is measured using the EMD before and after time
the heuristic is applied. Distance improvements are given as ratio of absolute
distance improvement divided by the old distance.

For each genre, the song model with the highest number of Gaussians was
picked as initial genre representation. After selecting the genre models, these
were iteratively adapted using the proposed heuristic, with α given by an
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Figure 5.9: Average distance reduction as function of parameter α

exponential decay function:

α = exp
−4 × t

tmax
(5.23)

Figure 5.9 shows the averaged distance reduction over all songs in the dataset,
during the genre classification task, as a function of the parameter α. It can
be seen that the obtained distance reductions do not depend linearly on α.
For α between 0 and 0.4, a small increase results in an over-proportional in-
crease of distance reduction. For α between 0.5 and 1, the opposite is true.
This effect can be explained by analyzing the behavior of the KL divergence
(Equation 5.22). Suppose the covariance matrices are identity matrices. The
symmetrized KL divergence then clearly shows quadratic behavior as a func-
tion of the distance between the means of two Gaussians. For small α, it is
likely that the cost reduction of moving clusters towards their most expensive
supplier is larger than the cost increase of secondary supplier clusters. For
larger α, the cost increase of secondary supplier clusters plays a more impor-
tant role than for small α. After a large shift, the new cluster constellation is
likely to result in new supplier/client relationships.

After training the genre models, the EMD is used to determine the distance
of each song to all of the genre models, each song is assigned to the class having
the lowest distance. The described procedure results in a genre classification
accuracy of 63%, which is comparable with the results obtained in [8]. The
confusion matrix is shown in Table 5.1.

The classification accuracy of the ‘Electronic’ genre (54%) and the ‘Pop /
Rock’ genre (45%) clearly degrade the overall classification performance. These
genres were populated with music from different sub-genres and thus show
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Electroninc 54.4 8.8 11.8 0.0 0.0 25.0
Classical 21.8 65.5 4.6 0.0 0.0 8.1

Jazz / Blues 29.4 0.0 70.6 0.0 0.0 0.0
Folk 0.0 5.3 0.0 94.7 0.0 0.0

Hardrock 4.8 2.3 0.0 0.0 88.1 4.8
Pop / Rock 12.3 12.3 0.0 0.0 29.6 45.8

Table 5.1: Confusion matrix for GMM based genre classification task

greater variation within the main genre than the other, well-classified genres.
This phenomenon is inherent to using single mixture models for classification
tasks with ill-defined classes. k-nearest neighbor approaches using low values
for k show better accuracy for these cases.

SOM Organization

By incorporating the GMMs into a SOM, the advantages of using GMMs
for representing a class of data and the dimension reduction obtained by the
SOM mapping, can be combined. For evaluating the quality of the SOM
organization, a k-nearest neighbor genre classification task is used. The song
GMMs were used to train a 9× 9 SOM. A suitable learning rate function α(t)

and neighborhood function φ(t, d) showed to be:

α(t) =
tmax − t

3 · tmax
(5.24)

φ(t, d) = α(t)e−500·d2 ·t (5.25)

with d the normalized distance in the SOM.
After training the SOM, each song is assigned to the neuron in the SOM

that has the smallest (EMD) distance. The k-nearest neighbor classifier then
uses this neuron’s coordinates in the 9× 9 grid as song positions to determine
the nearest neighbors of each song. The major advantage of this approach is
that instead of calculating the EMD on high dimensional GMMs, the classifier
can use a simple Euclidean distance in a two-dimensional SOM.

In previous work [9], the same dataset was used as input for a k-nearest
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Figure 5.10: Genre classification accuracy for different classification approaches

neighbor classifier that used the high dimensional GMMs to determine the
nearest neighbors. Using this approach, a classification accuracy of 87% was
reached.

Figure 5.10 shows the genre classification performances for the SOM-based
k-nn classification. the EMD classification as presented in [9] and, for reference,
the GMM classification accuracy presented in Section 5.4.6. The SOM-based
k-nn classification clearly outperforms the GMM classification strategy. This
is attributed to the fact that in the SOM, one single genre may occur in more
than one area of the SOM: the SOM adapts to the locality of the data, the
confusion matrix shows little off-diagonal classification errors (Table 5.2). The
EMD-kNN classification still outperforms the SOM based classification, but at
most by 10%. The EMD classification however, used GMMs in a 15 dimen-
sional space with on average 15 clusters to represent each song. In the SOM
based approach, each song is only represented by a two-dimensional coordinate
in a 9×9 SOM grid. By only using these coordinates, the computational com-
plexity for computing song similarity is drastically reduced. It allows real-time
applications for music management and playlist generation.

5.4.7 Music Management and Playlist Generation

In the previous section, it was shown that the SOM using GMMs adapts well
to the song GMM models. The neighborhood of each song is likely to be
dominated by songs of the same musical genre. This opens possibilities for
content-based playlist generation.
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Electroninc 83.3 5.0 5.6 0.2 0.0 6.0
Classical 7.9 88.1 1.0 0.0 0.3 2.7

Jazz / Blues 11.4 4.7 81.2 2.4 0.0 0.3
Folk 4.7 4.7 0.0 90.6 0.0 0.0

Hardrock 1.9 1.7 0.0 0.0 89.8 6.6
Pop / Rock 6.9 3.8 0.0 0.0 5.3 84.0

Table 5.2: Confusion matrix for SOM based genre classification task

Argumentation

Traditional content based playlist generation systems require a full song dis-
tance matrix. Based on this distance matrix, several heuristics can be used
to generate playlists [e.g. 82]. The major disadvantage of approaches using a
full distance matrix for playlist generation shows up when adding new songs
to a collection. In order to update the distance matrix, the distance to all
songs in the database has to be calculated. To this end, each song’s feature
data or statistical model thereof has to be available. By building a tree of
the songs in a distance matrix, the number of distance calculations may be
reduced. Only the songs that are close to the new song need accurate distance
information. Nevertheless, the song’s feature data or statistical model still has
to be available for all songs.

The SOM based approach does not require the song data or models to be
available after having trained the SOM. Once an initial dataset is available,
representing the musical tastes of the user(s) well, the SOM can be initialized
and trained. After training, of each song the mapped position in the SOM is
stored. When adding new songs to the database, only the mapped position in
the SOM has to be found. This requires the song to be compared only with
each neuron in the SOM, and not with all the songs already available in the
database.

Retrieving a distance matrix of all songs in the database only requires the
two-dimensional coordinates of each song in the SOM. Instead of the EMD
between single GMMs a simple Euclidean distance measure can be used. Since
playlists usually require the songs in the list to be similar with respect to certain
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criteria, it is unlikely that the full distance matrix is needed; only those songs
mapped around a seed song in the SOM are of relevance.

Since retrieval of a local distance matrix within a SOM is computationally
inexpensive, distance matrices of multiple SOMs representing different features
(e.g. features representing rhythmical or tonal information of a song) can be
combined at playlist generation time. This flexibility allows for a personal
definition of music similarity. The distance matrix used for playlist generation
can be generated as a weighted sum of multiple distance matrices. One person
can then assign a higher weight on rhythmical similarity while another finds
tonal information to be more relevant.

Evaluation

For evaluating the suitability of SOM based music organization for playlist
generation, a set of 775 songs from 60 genres was mapped in SOMs of sizes
10 × 10 . . . 14 × 14. Each song was modelled with 15 dimensional Gaussian
mixture models using 15 clusters. After mapping, a playlist is generated for
each song in the SOM, using a nearest neighbor query. Of each set of generated
playlists, the percentage of songs of the same genre as the query song within
the k nearest songs is determined. The results are compared with the results
obtained by following the same procedure on a song distance matrix computed
on the GMM song models.

Data � k 1 5 10
EMD Distance matrix 28.77 20.80 16.44

SOM 14x14 19.67 15.39 12.47
SOM 13x13 20.37 17.49 14.26
SOM 12x12 17.98 16.83 13.94
SOM 11x11 19.02 17.72 14.39
SOM 10x10 19.18 17.86 14.61

Sum of SOMs 26.20 19.82 15.96

Table 5.3: Percentage of songs of the same genre within k nearest neighbours

Table 5.3 lists the percentage of songs of the same genre as the seed songs
within the k nearest neighbours for the different data sets. For larger k, the
results of the SOMs get closer to the results obtained from the EMD distance
matrix. The differences between the different SOM sizes are small. As the
data of the SOM mappings are only two-dimensional, distances between songs
can easily be computed and results of multiple SOMs can be combined. The
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last row of the table shows the performance of such an ‘accumulated’ SOM: it
nearly reaches the performance of the underlying data.

5.4.8 Conclusions

This paper presented a heuristic that allows assimilating GMMs into SOMs.
The heuristic allows to adapt one GMM towards a second GMM with a adap-
tion factor α. This adaption factor is a necessary condition for a GMM adap-
tion algorithm to allow assimilation in SOMs. The heuristic was tested us-
ing two music genre classification tasks. The first classification task used the
heuristic to train GMMs for each genre and then classified the songs using the
EMD. The second classification task used a mapping of GMM based high di-
mensional song models in a two dimensional SOM using the proposed heuristic.
The SOM showed good self organizing properties and the genre classification
task showed good classification rates. The SOM combines the advantages of
using complex statistical models for describing music and the data reduction
by mapping complex high dimensional data in a low dimensional space. By
only using the mapped song positions in a SOM for determining song similarity,
computationally inexpensive distance measures may be used. When combining
multiple SOMs using simple distance measures on the mapped SOM positions,
performance nearly equals the performance that can be obtained on the original
input data.

5.5 Summary

This chapter shows the power of using variable-size Gaussian mixture models
in self organizing maps for music playlist generation. In Section 5.2, algorithms
for determining an optimal number of Gaussians for individual song models
were compared. It was shown that the BSAS algorithm is a reasonable ap-
proximation of Figueiredo’s MDL criterium [28] at much lower computational
cost.

The variable-size Gaussian mixture models are used in a genre-classification
task in Section 5.3. It was shown that while using variable-size GMMs the
classification accuracy could be increased compared to using fixed size GMMs
having on average a higher number of Gaussians. The obtained classification
accuracy increase was only 3 − 4%, but the computational complexity was
reduced by 40%.

Finally, the variable size GMMs are mapped in a SOM using the heuristic
that was presented in Section 4.4. The performance of the SOM was evaluated
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using a genre classification task in which the mapped song positions were used
as input to a k-nearest neighbour classifier. The classification accuracy using
these mapped song positions was only slightly worse than the classification
accuracy obtained with a k-nearest neigbour classifier operating in the high-
dimensional GMM space.
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Chapter 6

Conclusions

6.1 Results

During the last four years, content-based music playlist generation systems
have not been able to penetrate in the market of automatic playlist generation
systems. It was found by Aucouturier and Pachet [6] that there seems to be a
‘glass ceiling’ for content based music similarity measures. Indeed, no system
was able to prove the opposite, the perfect content based music similarity
measure is not yet found.

The main research question that is adressed in this thesis is if it is possible
to reduce computational complexity of playlist generation systems at playlist
generation time, without loosing quality of the systems. This question is as-
sessed by answering three questions each adressing part of the main research
question.

The first question that is answered is on playlist quality criteria. The result
of a user survey on playlist requirements is presented. Visitors of several online
music fora were asked to participate in the survey, which resulted in a total
of 318 responses. The survey aimed at gaining insight in musical preferences,
listening behavior and playlist preferences from a broad target audience. From
this user survey, it can be concluded that there is no general quality measure
on playlists. The participants have a broad range of requirements on playlists,
the individual variation on what is perceived as ‘good’ is very large. Most
participants agree on the fact that the songs in a playlist should be of similar
mood. It is argued that for evaluating playlist quality, this similar mood
criterium can be simplified to assessing music genre consistency.

The second question is wether the current use of Gaussian mixture models
for modelling songs is appropriate. Prior art systems model the feature distri-
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bution of each song with a fixed number of Gaussians in a Gaussian mixture
model, for all songs. It is shown in this thesis (Section 5.3) that by assessing the
required number of Gaussians for each song individually, song similarity can
be captured better at an average lower number of Gaussians per song. This
increase of performance was demonstrated using a genre classification task:
A higher classification accuracy was obtained. Since the computational com-
plexity for determining song similarity depends on the number of modelling
parameters, the computational complexity for classification was reduced. This
result was presented at a paper at the international conference on music infor-
mation retrieval in 2007 [9].

The third question is if it is possible to find a more compact song repre-
sentation that allows song similarity calculation at playlist generation time. A
heuristic is developed that allows Gaussian mixture models to be assimilated
in self organizing maps. Traditional playlist generation systems compute song
similarity on high-dimensional statistical models of the songs. Often, Gaussian
mixture models are used for capturing the distriution of a feature set computed
over each song. The use of self organizing map for organization of large music
databases was already explored by others. The performance of these systems
was limited by the fact that only regular vectors can be assimilated in a self
organizing map. In this thesis, an algorithm is presented that enables assimilat-
ing Gaussian mixture models into self organizing maps. By enabling Gaussian
mixture models instead of conventional high dimensional vectors, the amount
of information that is available in the SOM mapping procedure is increased
substantially. By mapping Gaussian mixture models in a SOM, similarity cal-
culations can be performed in the mapped, low-dimensional euclidean space.
It is shown in Section 5.4 that SOMs using GMMs can well be used for music
exploration tasks. The performance of SOMs using GMMs is assessed with a
genre classification and a playlist generation task. Both task show performance
similar to algorithms operating in high dimensional feature spaces, but only
use the two-dimensional positions in the SOM for determining song similarity.
The contents of Section 5.4 is submitted for publication in [10] and a patent
on the method for mapping GMMs in SOMs is applied for.

6.2 Outlook

The broadness of the music information retrieval field of research is reflected in
the complexiness of designing, realizing and testing music playlist generating
systems. As the understanding of how people use and enjoy digital media
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will continually improve, it will be possible to agree on a more detailed set of
requirements on automatic playlist generation systems than the set that was
available during the course of the research that is presented in this thesis. As
not only the understanding will evolve, but also computational ressources and
power management in mobile devices will continue to develop, the constraints
for mobile MIR applications will be less tight than they are now.

Mobile playlist generation systems will soon be able to make use of ‘the
wisdom of the crowds’ by providing an online connection to social music recom-
mender sites. By combining social recommender data with detailed and correct
metadata providing song and artist descriptions, a big step towards the end
of mobile music players as being ‘music graveyards’ will be made. Eventu-
ally also content-based recommendations will be available to the mobile music
consumer. These methods complete the spectrum of music recommendations
by closing the cold-start problem that social recommenders have and provid-
ing new ways of finding similarities between songs. The presented methods
for improving speed of content based playlist generation systems while keep-
ing the required robustness of recommendations intact, provide a step towards
content based music recommendation that is realizable on low-resource mobile
platforms.

The entertainment industry is one of the biggest industries in the world
and will provide new impulses to media consumption. These new impulses,
being new kind of media, new transportation channels or new data bearers,
will requre the MIR researchers to keep being innovative and find better ways
on how to handle large quantities of media data. Music will be consumed
evertime, new musical instruments will be invented and new music genres will
appear. This constantly changing landscape of music provides huge challenges
to the MIR community and guarantees many years of challenging research on
the road ahead of us.
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